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1 Introduction

The military has a demonstrated need for knowledge-based systems with
significantly higher quantitative performance. The Pilot's Associate, for example,
will require knowledge-based systems that can cope with large amounts of data and
that produce responses in real-time. The current hardware and software
architectures for knowledge-based systems cannot support such requirements. The
most promising approach for achieving orders of magnitude improvement in the
quantitative performance of knowledge-based systems is by exploiting concurrency
on multiprocessor systems.

Based on near-term projections for integrated circuit technologies, it is clear that
highly patallel multiprocessor computers consisting of 100's to 1000's of processors
and realizing a variety of concurrent architectures can be built. The major issue is
whether such computers can be effectively used to enhance the performance of
knowledge-based systems. Since 1985, the Knowledge Systems Laboratory at
Stanford University has been investigating this issue. More specifically, our Expert
Systems on Multiprocessor Architectures project is addressing the following
questions:

1. Can multiprocessor computers be used to achieve significant execution
speedup (two to three orders of magnitude) over serial machines for
knowledge-based system applications?

2. What are the limiting factors in achieving speedup for such systems?

3. What are appropriate software models and methodologies for
programming such systems?

4. What are appropriate hardware architectures for supporting such systems?

Given the lack of any formal foundations for studying concurrent knowledge-
based systems, the approach that we have taken to answering these questions is
empirical rather than theoretical. Our research methodology is:

1. Select specific knowledge-based system applications, primarily signal
understanding applications.

2. Encode these applications following various proposed concurrent software
models.




3. Evaluate the qualitative and quantitative performance of the applications
running on simulated multiprocessor machines with respect to varying
hardware parameters, for example, number of processors and
communication protocols, and varying software organizations, for
example, degree of control centralization.

This report summarizes the activities and results of the major components of our
project during the 27-month Phase One effort that commenced in March of 1985.

2 SIMPLE/CARE Multiprocessor Simulation System

Simulation of systems at an architectural level can offer an effective way to study
critical design choices if (1) the performance of the simulator is adequate to
examine designs executing significant code bodies -- not just toy problems or small
application fragments, (2) the details of the simulation include the critical details of
the design, (3) the view of the design presented by the simulator instrumentation
leads to useful insights on potential problems with the design, and (4) there is
enough flexibility in the simulation system so that the asking of unplanned
questions is not suppressed by the weight of the mechanics involved in making
changes either in the design or its measurement.

SIMPLE/CARE [4] is a simulation system which satisfies these requirements. It
forms the foundation for our empirical investigations of software architectures and
hardware system architectures for concurrent knowledge-based systems. SIMPLE is a
CAD (Computer Aided Design) system for hierarchical, multiple level specification
of computer architectures and includes an associated mixed-mode, event-based
simulator. CARE is a parameterized, multiprocessor array emulation specified in
SIMPLE’s specification languages and running on SIMPLE's simulator. Our
simulation system is in use by several research groups at Stanford, and it has been
ported to several external sites including NASA Ames Research Center.

2.1 The Design of SIMPLE/CARE

The overall research problem motivating the development of both SIMPLE and
CARE is the performance study of 100 t. 1000-processor multiprocessor systems
executing knowledge-based signal interpretation applications.

A set of constraints pertinent to this problem governed the design of
SIMPLE/CARE. The applications represent significant bodies of code and so
simulation run times are an important consideration. Moreover, the issues involved
with the interactions of multiprocessor system elements are sufficiently unexplored




prior to simulation that simplifications in the architectural model, specifically with
respect to processor interactions, are suspect. This need for detail is, of course, in
tension with the need for simulation performance. The ways that simulated system
components are composed into complete systems is difficult to bound. Further, it is
clear that the models of these components are elaborated over time and undergo
substantial change as design concepts evolved. It is also clear that the ways of
examining the operation of these components would change independently (and at a
great rate) as early experience indicates what alternative aspect of system operation
should have been monitored in any given completed run.

The design goals that emerged are (1) that the simulation system should support
the management of substantial flexibility with regard to simulated system structure,
function, and instrumentation and (2) that, in order to accomplish runs in
acceptable elapsed times, the detail of simulation should be particularly focused on
the communications, process scheduling, and context switching support facilities of
the simulated system -- that is, on just those aspects of system execution critical to
multiprocessor (as opposed to uniprocessor) operation.

2.2 Architecture Design-time Interaction and Simulator Run-time Operation

Encapsulation of the state of design components with the procedures that
manipulate that state is one clear way to manage architectural design evolution.
Such encapsulation partitions the design along well defined boundaries.
Components (by and large) interact with other components only through defined
ports. Connections between components terminate at such ports. When a system
simulation is initialized, connections are traced so that for every port, the simulator
knows the connected (terminating) ports together with their containing components.
Once such initialization is complete, that is, throughout the simulation run,
assertions about the stat= of a port of one component can be directly translated to
assertions about the state of connected ports of other components.

Partitioning issues of system structure, component behavior, and instrumentation
into separate domains of consideration helps in managing a design that is both fluid
and complex. System structure, that is, the relationship between components, can be
specified through use of an interactive, graphics structure editor and is largely
independent of component function per se. Figure 1 shows an example of
SIMPLE's structural editor.

Component behavior is encapsulated in a set of definitions pertinent to the given
class of component. Each component in a SIMPLE specified simulated system is a
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Figure 1: Graphic Structure Specification

member of a class defined for that component type. Instrumentation is
automatically and invisibly made part of the definition of each simulated
component that is to be monitored during a run. This is done by arranging that
the class of every component to be monitored is a specialization of the general
instrumented-box class. The basic data structures and procedures for monitoring
simulated components and maintaining the organizational relationships between each
component and its related instrumentation are inherited through this general,
ancestral class and are thus made a separate, substantially independent consideration
in the design.

A further partitioning of concerns is employed to separate out the definition of
the application programming language interface and its support (as provided by
CARE) from the underlying information flow control governing component
behavior. The behavioral descriptions of components (which are expressed as sets
of condition/action rules) deal generically with gating information, independently of
the structure of the information, between ports of the component and its internal
state variables. This is separated in the component model definitions from the




functions performed to create and manipulate the information so gated. The
simulated implementation of the application programming language support
facilities, on the other hand, relies only on the specifics of the information and its
structure and plays no part in gating it between the components of the system.
Changing the definition of the application language is thus done independently of
changing component flow control behavior. The application programmer and the
implementer of the application language interface may use whatever data structures
seem suitable to them, be they numbers and keywords or procedure bodies and
execution environments. The simulation system doesn't care.

The component probe definitions, that is, the specifications of what information
should be captured for each component type, are separated from the descriptions of
the behavior of such .omponents. In designing for flexibility in the
instrumentation system, it turns out to be important to further divide the
information presentation from the information collection issues. The mapping
from particular component probes to particular instrument panels and the
transformations to be applied to the information as it passed from a given kind of
probe to a given panel (and between panels) is captured in the instrument
specification. This is a definition of what kinds of panels are included in an
instrument, how they fit on an instrument screen, how they are labeled and scaled,
and what information from which kinds of probes are displayed on each panel.
The instrument specification also indicates what kinds of probes are to be
connected to which kinds (that is, which classes) of components in the system.

application code

multiprocessor
component library

programming language
interface

component
interface

probe

specification

PR O

design time interactions simulation run
Figure 2: Design Time Interactions and Run Time Representations




Putting together all the definitions of components, component probes, panels,
instruments, applications interfaces, and inter-component relationships is done in a
set of design time interactions by a system architect. These interactions are used by
the simulation system to generate efficient run time representations so that
simulation performance goals can be met. Figure 2 illustrates the partition between
design time interactions and simulation run time operation. Structure editing pulls
together components from the component library to produce a circuit. Associated
with some components in the library, there are definitions for the syntax and
underlying mechanisms of a multiprocessor applications language. These specify the
interface used to provide the program input to the multiprocessor system being
simulated. The definitions used to generate component probes are associated with
each library component to be monitored. There may be several such definitions,
each appropriate to measuring a different aspect of the associated component's
operation. An instrument specification selects from these definitions, elaborates
them with selections from a set of probe operation modules to include any pre-
processing (for example, a moving average) to be calculated by the probe, and
indicates under what conditions what information from the probe is to be sent to
which panels of the instrument and how it is to be transformed and displayed there.
Instrument specifications also partition the screen among the panels of the
instrument. The end product of these design time interactions is an instrumented
circuit and an instrument. The instrument comprises a set of instrument panels and
a set of constraints relating them to the instrument screen. The instrumented
circuit ties together instances of components, probes, and panels for a simulation
run. Figure 3 gives an example set of instrument panels for a run.

For each defined class of component and its associated probes, the design time
interactions produce code bodies that accomplish simulation operations during a
run. It is an attribute of the underlying Lisp base of the simulation system that
changes in these definitions have immediate effect even during a simulation run
~- an important capability during debugging.

3 LAMINA Programming Interface

LAMINA [3] provides extensions to Lisp for studying expressed concurrency in
functional programming, object oriented, and shared variable models of concurrent
computation. The implementation of the support for all three computational
models is based on the common notion of a stream, a datatype which can be used
to express pipelined operations by representing the promise of a (potentially
infinite) sequence of values. LAMINA also provides system support for the
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management of software pipelines and dynamic structure creation, relocation, and
reclamation in a multiprocessor, multi-address-space system.

Algorithms

and applications written

in LAMINA may

be run on the

SIMPLE/CARE simulation system in order to study their execution on alternative
multiprocessor architectures,




3.1 Futures and Streams

Futures and streams provide the common ground between functional, object
oriented and shared variable programming in LAMINA., They are fundamental to
the LAMINA functional and object oriented programming regimes for parallel
programming and, since they are the only mutable items passed as references (rather
than structure values) between potentially concurrent computations in LAMINA,
they are also used to build the mechanisms for shared variable computation.

Futures and streams represent promises for values. In LAMINA, futures can be
used as placeholders in a computation while the values themselves are being eagerly
produced by concurrent evaluations for consumption as available. Extending this
idea, LAMINA defines a stream as an abstract data type which is a placeholder
representing a sequence of eagerly produced but potentially unavailable values.

Some operators do not require the actual values promised by a stream or future in
order to perform their work. For example, a constructor may create data structures
that include streams as structure elements. The creation can be accomplished
without accessing any of the promised values that the streams represent; referencing
streams as placeholders is sufficient. Further, streams, as sequences of potentially
unavailable but eagerly produced values, can be used in LAMINA to build pipelines
of computation connecting the producers and consumers of such values.

Streams may be arguments to or the results of function application. In LAMINA,
streams are a primitive data type developed for use in an object oriented
programming style and futures are a specialization of streams that represent only a
single (potentially unavailable) value as required for the functional programming
style. Streams and futures are always passed as references.

3.2 LAMINA'S Models of Concurrent Computation

Perhaps the style of computation most readily treated as concurrent is that of
functional programming. LAMINA supports concurrent programming using this
style by providing means (1) to spawn computations that will provide values to
futures and (2) to accept such values in a computation -- scheduling the
computation when they are available. The constructs defining the LAMINA
interface for functional programming are:

o (future form) spawns execution of a lexical closure, that is, a procedure
body to execute a given form together with an environment (determined
by the rules of iexical scoping) in which to do the execution. This
closure is executed (eagerly) on a randomly selected site. A future which




will contain the value of the computation when it is available is
immediately returned.

« (with-values future-bindings forms) spawns an evaluation on the local
site to execute the closure corresponding to the forms. The evaluation is
done within an environment that includes bindings for given variables to
the values available for the indicated futures. The evaluation is deferred
until all of the indicated futures have values that are not themseives
futures. The immediate result of executing a with-values form is a
future whose value will be supplied by the deferred evaluation.

In LAMINA’'s object oriented programming interface, an object encapsulates
related state variables and is referenced throughout an application by that object's
Self-Stream, a stream which is one of the object's state variables. Objects are
allocated in a processor's local address space. To perform operations on an object,
potentially involving and modifying its state variables, a task request posting
consisting of a task selector and associated parametric values for the operation is
sent to the object, that is, provided as one of the values of the self-stream for that
object. Each of the task request postings that provide the values for the self-stream
of a object is taken in turn from that stream and serviced by that object.

Task request postings are serviced atomically in the context of an object.
Executions specified by such request postings are done without visible partition with
respect to other operations on that object, that is, operations on any given object
will not be interleaved. Each operation is thus defined to be independently atomic.

All the operations on an object done as specified by the requests are taken in turn
from the object’s self-stream. Each operation runs to completion. If an operation
on an object is preempted (due, for example, to page faulting, schedule quanta lapse,
or error condition), no other operation on that object will be started before the
preempted operation is completed. However, operations on other objects may
proceed normally. A stack is maintained for each preempted operation.

Shared variables are dealt with in LAMINA by treating them as references whose
associated value may be mutated. A shared variable reference is constructed,
accessed, and mutated by provided interface operations. Support for shared data
pairs and arrays is also provided. For all these operations, execution is deferred and
no other executions are performed by the initiating processor until the indicated
operation is accomplished.

Shared queues (which are streams) are also provided. These queues are maintained




in a processor's local memory. When a process reads from a shared queue, it is
halted and descheduled; execution is resumed when the requested data arrives. A
simple spin lock is provided for busy-wait synchronization in the LAMINA shared
variable interface.

Several utility operations are provided by LAMINA to specify computation (and
storage) sites, dismiss computations, and provide a timeout facility for applications
desiring one. LAMINA also provides simulation control facilities to initiate a
CARE simulation, read the current simulation time, and do a computation without
increasing the simulation time.

4 Poligon Problem Solving Framework

Poligon [9, 10] is a framework for the development of Blackboard-like
applications on a (simulated) multiprocessor. It consists of:

1. A compiler, which compiles a high-level description of the Blackboard's
structure and the Knowledge to be applied by the system, to run on a
distributed memory multiprocessor.

2. A run-time system which provides a debugging and testing environment
for Poligon programs as well as run-time support.

Both the compiler and the run-time system are thoroughly integrated with the
program development environment of TI Lisp machines, the machine on which the
execution of Poligon programs are simulated.

Serial Blackboard Systems are implemented with the Nodes being represented as
records on the Blackboard. The Knowledge is encoded in Knowledge Sources.
These are typically compiled into procedures which are invoked by the Blackboard
System's kernel. There is some form of scheduler for the Knowledge, which invokes
one Knowledge Source after another. The Blackboard and the Knowledge Base both
share the same address space, though they are functionally distinct. Knowledge
Sources are “"invoked” (executed) as a result of changes in the Blackboard, placing
that change event in a queue used by the scheduler. The scheduler repeatedly picks
a Knowledge Source which is interested in the type of event at the end of the
queue.

The design of Poligon has been motivated by the idea of trying to eliminate the
bottlenecks that would be experienced = an existing, serial Blackboard System were
to be parallelized only by the inclusior of "do this bit in parallel” constructs. The
major changes from the serial blackboard model are listed below.

10




o The scheduling queue of a serial system is eliminated altogether in
Poligon. This means that concurrent attempts to invoke Rules are not
held up waiting for access to this shared data structure.

« Having a Knowledge Base, which is logically distinct from the
Blackboard, is no longer necessary since there is now nothing to get
between them to control the application of the knowledge. This allows
all Knowledge to be attached to those Nodes that are interested in the
Knowledge by the compiler.

These changes eliminate at one stroke the bottlenecks of the shared scheduler and
the Knowledge Base to Blackboard interface. These changes allowed the
development of the idea of the "Node as a processor” metaphor for parallel
Blackboard systems.

Having eliminated the scheduling mechanism, however, one needs some means of
determining when a certain piece of Knowledge should be invoked. It would be
hopelessly inefficient to have all of the Knowledge executed all of the time, since
most of the time it would find itself inapplicable. It was decided that a simple
daemon-driven approach would be used to avoid this problem. This results in the
Knowledge being directly sensitive to changes in the Blackboard and able to act
immediately upon any such changes.

Existing Blackboard Systems often express the Knowledge in their Knowledge
Sources as collections of Pattern/Action Rules. These are normally executed
serially, in the lexical order in which they are defined. Poligon on the other hand
compiles Knowledge Sources away all together, allowing their constituent Rules to be
executed in parallel.

The "Node as a processor” metaphor is itself a major step away from the normal
means of implementing Blackboard Systems. This, however, is not enough. This
would give us data parallelism, resulting from the large number of Nodes in the
system being able simultaneously to execute Rules, whilst still failing to exploit the
potential Knowledge parallelism. This is because each processing element is a
uniprocesor capable of executing at most one Rule at a time. Poligon, therefore,
goes beyond this simple model to one which would more accurately be called the
"Rule invocation as a process” model. This allows the Poligon system to distribute
concurrent Rule invocations to different processing elements.

The elimination of serializing components in a Blackboard system also eliminates
those mechanisms which are normally used to preserve coherency in the solution.
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Clearly there is a trade-off which can be made between the amount of control and
coherency preserving mechanisms and the amount of exploitable parallelism.
Poligon is an experiment to explore one extreme of this spectrum. It remains to be
seen whether the trade-off made in Poligon results in an overall improvement in
system performance.

4.1 How Poligen matches the problem domain

Poligon is not a general purpose programming language, other than in the Turing
Complete sense. It is specialized to support one computational model and that
computational model, itself, has limitations on its sphere of reasonable applicability.
It has been designed with applications such as real-time signal understanding and
data fusion in mind, though applications outside this domain are being investigated.

The structure of the problem domain is one that requires the representation of a
large number of distinct entities in the solution space. For example the vocabulary
of the Elint problem domain [2] is full of such things as aircraft, radar emitting
platforms and radar track segments. Poligon provides a rich representation language
in which these objects and specializations of them can be expressed. This allows the
system to take full advantage of the mutual independence of any of the objects in
the solution space to exploit parallelism.

4.2 How Poligon matches its target hardware

Poligon could, of course, run on any machine in principle. In practice, however,
it has been designed with a CARE type of machine model in mind and has been
optimized to take advantage of it. The grain size of the executable chunks in
Poligon programs is designed to suit this model, i.e. each chunk represents, ideally,
a few function calls. This makes it coarser grained than those systems that want to
execute everything that can be in parallel, for instance data flow machines, but it is
a lot finer grained than most other concurrent Blackboard Systems in which each
processing element contains a complete Blackboard System.

The target machine model, being of the distributed-memory, message-passing
variety including essentially no capability to pass references, strongly discourages
shared variables or mutable global data of any sort and encourages a message-
passing style of programming. The Poligon language is one in which the
programmer is given an abstract view of programming using the Blackboard
Problem-Solving model. The Poligon language has no construct for message sending
at all, nor has it any primitives by which the user has access to the underlying
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architecture or topology. It is assumed to be the duty of the Poligon system or the
target machine's operating system to look after such concerns. The Poligon
compiler compiles its programs into the message passing primitives of the
underlying system. This allows the efficient use of the underlying architecture,
whilst still leaving the source program uncluttered by concrete details of the target
architecture.

Poligon allows only global constants (but not variables) since these can be
distributed at program load-time.

4.3 What we have learned to date

Experiments with Poligon are by no means complete, but we have learned quite a
bit so far. Some of these lessons are enumerated below.

o« It is very hard to write any program which implements either a
framework, such as Poligon or an application such as those which have
been mounted on Poligon. This is due largely to asynchronous side
effects. A system with better formal properties would be less error
prone in this respect but might well make much less efficient use of the
hardware. These difficulties could also be caused by an insufficiency of
mechanisms to control coherency in Poligon.

o In order to produce a reliable program it is necessary to write code
which makes no assumptions about anything that any other part of the
system might be doing. Failure to do so results in brittle systems.

« In order to achieve a coherent solution it was found to be necessary to
develop a number of programming methodologies.

Node Level The creation of Nodes is tricky. Because each element
is likely to represent some real-world object, such as
an aircraft, it is important either to provide a
mechanism for resolving the conflict caused by
multiple asynchronous requests to create an element
that represents the same thing or to provide a
mechanism for managing the creation of Nodes.
Poligon opts for the latter approach.

Slot Level The programmer should cause each Node to have an
idea of how to improve its own idea of the solution
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- to have Goals. In Poligon this is done at a fine
grain, with each field of each element in the solution
being able to have associated with it functions which
enable it to evaluate itself.

It was found that a good axiom for programming these
systems is "Never throw away any data unless you are
convinced that you have better data.” This is the sort
of behavior that is used in the evaluation functions
mentioned above.

Rule Execution Poligon attempts to maintain the smallest critical
sections possible. The original implementation of
Poligon in fact had as its only atomic actions reading
a field and writing a field. It was soon found that, in
order to maintain consistency during rule execution, it
had to be possible to read the values from a number
of fields simultaneously - taking a snapshot without
the subject moving. This, coupled with critical
sections for the writing of collections of values, allows
confidence that the picture that one secs when taking
such a snapshot of a Node is consistent, even if not
necessarily the most up to date. It is important for a
Poligon programmer to be aware that the Node of
which a snapshot has been taken may well be read
from and written to by other Rules asynchronously
during the invocation of the Rule taking the snapshot.

S CAGE Problem Solving Framework

CAGE [1, 8] is a framework for building and executing applications as a
concurrent blackboard system. CAGE is based on the AGE [7] serial blackboard
framework. It includes mechanisms for the concurrent execution of knowledge
sources, rules and parts of rules. The CAGE user has complete control over which
of these mechanisms are used. CAGE is designed to execute on a shared-memory,
multiprocessor system with tens to hundreds of processors. It is implemented using
Qlisp, a concurrent dialect of Lisp designed for multiprocessors with a single, shared
address space. CAGE currently executes on a shared-memory variant of CARE [4]
simulated using the SIMPLE simulation system.
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5.1 CAGE Design

CAGE is a blackboard framework system. In addition to the basic functionality
found in AGE, CAGE allows user-directed control over the concurrent execution of
many of its constructs. Otherwise, the two systems are functionally identical. The
basic components of a system built with CAGE are:

« A global data store (the blackboard) on which emerging solutions are
posted. The elements on the blackboard are organized into levels and
represented as a set of attribute-value pairs.

« Globally accessible lists on which control information is posted (e.g.
lists of events, expectations, etc.).

o An indefinite number of knowledge sources, each consisting of an
indefinite number of condition-action rules.

o Various kinds of control information that determine (a) which
blackboard element is to be the focus of attention and (b) which
knowledge source is to be used at any given point in the problem solving
process.

» Declarations that specify the components (knowledge sources, rules,
condition and action parts of rules) to be executed in parallel, and when
to force synchronization.

Using the concurrency control specifications, the user can alter the simple, serial
control loop of CAGE by introducing concurrent actions. CAGE allows parallelism
ranging from concurrently executing knowledge sources all the way down to
concurrent actions on the condition and action sides of the rules.

5.2 Building applications in CAGE

The CAGE System provides a CAGE language with which the user can write an
application. The type of user-supplied information is similar to that required for
applications constructed in the AGE system, however, the structure of the
information is somewhat different.
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5.2.1 Blackboard Data Structure

There are two major components in the CAGE blackboard structure, the
hypothesis classes (frequently called levels in hierarchical blackboard structures) and
the hypothesis nodes. The user must specify the classes that make up his
application’s blackboard structure. For each class, the user must define the fields to
be associated with the nodes created in that class. Nodes are created in those
classes, either a priori by the user or dynamically while executing the user’s rules.
Each of the classes is defined as an object with the attributes as instance variables
and with the nodes as instances of the class objects.

5.2.2 Control Structure

All CAGE control information is referenced through the Control-Structure object
which is basically the same as in AGE.

5.2.3 Knowledge Sources

CAGE knowledge sources are partitions of the application knowleage. Each
knowledge source consists of some declarative information and a set of rules.

Knowledge Source Declarations A knowledge source consists of more than just
groups of rules. In order to interpret the rules properly, CAGE needs answers to
some questions about knowledge source control, for example,

o Under what circumstances should this knowledge source be invoked?

o Which one, of all of the rules whose condition part is satisfied, should
be executed?

« Are there any local variables to be defined for this knowledge source?

The following are the primary knowledge source control options available for the
user to use in order to tailor a knowledge source:

Preconditions: A list of tokens, representing the event names used in
rules. If the currently focused event has an event name that matches one
of the knowledge source's preconditions, then that knowledge source is
activated.

Hit Strategy: There are two main hit strategies available in CAGE,
Single and Multiple. When a knowledge source with a single-hit strategy
is invoked, the rules of that knowledge source are evaluated, in order,
until one rule's condition is satisfied. Then, the actions of the action
part of the rule are executed, and no further rule is evaluated. With a
multiple-hit strategy, the condition parts of all the rules are evaluated,
and all the action parts of the rules whose conditions were true are
executed.
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Definitions: A list of local variables. The definitions are an efficiency
feature to avoid the repeated calculation of the same variable. The
structure is similar to that of LET, pairs of a variable names and
expressions.

Rule Order: A list of rule names, representing the rules of the
knowledge source. This is the order in which the rules are to be
evaluated when in serial mode.

5.2.4 Rules

CAGE rules consist of three major parts: definitions, conditions, and actions.

Definitions; The definition part of a rule is similar to a LET in
structure. The scope of the variables defined here is the rule, both in the
condition and action parts, as well as other definitions in the rule.

Condition part: The condition part consists of one or more conditional
clauses. The clauses can be an arbitrary expression. The condition part
can reference both the variables local to the rule or to the knowledge
source. The CAGE system provides several access functions for retrieving
values from the blackboard nodes which can be used in the condition
part.

Action part: The action clauses make up the final part of a CAGE rule.
The actions specify the changes to be made to the blackboard and how
those changes are to be made. The user must specify what node and
attributes on the blackboard are to be changed, what the new links or
values are, and how those changes are to be made (possibly deleting some
old values). The user must also specify an event name representing the
type of change this action makes to the blackboard. If and when the
event created by this action is selected as a focus event, this token will be
matched against the preconditions of the knowledge sources to determine
which knowledge source to invoke next.

5.3 Specifying Concurrency

CAGE supports the concurrent evaluation of various pieces of knowledge. The
use of knowledge sources to partition the knowledge in blackboard systems and, in
particular, the structure of the knowledge sources in CAGE provide several obvious
places for concurrency. The knowledge sources group the domain knowledge into
independent modules, which, theoretically, could be invoked independently and
concurrently. Within each knowledge source the rules provide another source of
parallelism, and within ez ‘h rule, the clauses of the condition part and the different
actions within the action part provide others. Of course, not all the clauses, rules or
even knowledge sources are actually implemented totally independently of each other
and some serialization may be necessary to solve the application problem correctly.

The following are the options for parallelism available in CAGE, grouped
according to their allowed use in combination.
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Clause level: can be used in combination with each other or any other
parallel option.

actions: Execute the action clauses of a rule in paraliel.
Note: When running the actions concurrently non-determinism
may result if both destructive (Supersede in CAGE) and
constructive (Modify) actions occur to the same object-attribute.

conditions: Evaluate the condition clauses of a rule in
parallel. Note: Use the rule definitions to set any local
variables tested here, insuring that the lhs clauses will not be
contending for the same data element.

rule-definitions: Evaluate the definitions of a rule in parallel.
Again, these definitions should be independent of each other
AND should avoid accessing the same data, if their concurrent
evaluation is to result in an actual speed-up.

Rule level: Definitions can be used in combination with any of the
other options, but only one of the rule options, single, muitiple, sync or
nosync can be used at a time.

definitions:  Evaluate the definitions concurrently at the
beginning of a knowledge source.

rules-single: Evaluate all the condition parts of the rules of a
knowledge source concurrently, but only execute the actions of
one successfully evaluated rule.

rules-multiple: Evaluate all of the conditions of the rules of a
knowledge source concurrently, wait until all the evaluation is
completed, then execute the actions of all the successfully
evaluated rules serially.

rules-sync: Evaluate all the condition parts of the rules of a
knowledge source concurrently, wait until all the evaluation is
completed, then execute the actions of all applicable rules
concurrently.

rules-nosync: Evaluate the condition parts of the rules of a
knowledge source in parallel and execute the action part of
each rules as soon as the conditions evaluate to true. Executed
the actions within the action part in parallel. With this option
there is no synchronization between the rules in the knowledge
source.

Knowledge source level: Only one of the concurrency options for the
knowledge source can be set at any one time.

kss: Activate all the applicable knowledge sources at once.
Synchronization is accomplished by waiting for all knowledge
sources to complete execution (and the event list is updated)
before invoking a new set of knowledge sources concurrently.

kss-nosync: Invoke all applicable knowledge sources as soon
as a new event is created. This option provides the least
control of all the options available and does no
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synchronization. Many applications will have to be
significantly changed to execute correctly under these
conditions, particularly removing any possible circular
knowledge source invocations. Without any synchronization, as
soon as an event is created all relevant knowledge sources
become active -- no events are added to the eventlist and no
focus event is ever selected.

kss-minisync: Add an event to the event list and do minimal
computation at the point of synchronization before invoking
the next set of knowledge sources. The main computation done
is the collection and pruning of similar events, leaving fewer
events to activate subsequent knowledge sources.

5.4 CAGE Machine Model

Because CARE is a message passing, distributed memory model, we had to create a
shared memory variant of CARE (o simulate CAGE execution. Currently we
siniulate an even number of processors, using half as processor-cache pairs and half
as controller-memory pairs. The atomic unit of memory access in CAGE is a
blackboard node. Concurrent node access requests are handled by simple spin lock
mechanisms.

With CAGE-CARE every step of the simulation, down to a very low level, is
measured. For example, one can track the length of the memory queues to get a
handle on a major issue in programming concurrent blackboard systems, memory
contention.  Other measurable factors include the overhead for creating new
processes, network communication costs and the cost of creating a new node. Using
CAGE-CARE one can experiment with multiprocessors of various sizes and can get
a reasonably accurate picture of the parallelism obtainable for a particular
application. The only disadvantage for the user is the length of real time it takes
to run a simulation on CAGE-CARE. and combinations later.

6 CAGE, Poligon and LAMINA Comparative Experiments

During the past contract period we have been developing application software and
machine architecture models to support a series of end-to-end experiments
comparing various concurrent programming systems for knowledge-based
applications. The goals of these experiments are to:

1. Obtain quantitative comparisons of the performance of the programming
systems.
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2. Gain insights into how different concurrent programming models lead to
different (or similar) application decomposition and organization.

3. Force the refinement of the concurrent programming systems so as to
better support application development.

4. Gain insights into the ease or difficulty of writing application code in
each of the programming systems.

6.1 The Experiments

The common application for these experiments is Elint [2], a real-time,
knowledge-based system for integrating pre-processed, passively acquired radar
emissions from aircraft. This Elint application has been implemented in three
different concurrent programming systems:

» The concurrent object-oriented programming model supported by
LAMINA [3]. LAMINA is the basic, low-level programming interface
to CARE, a grid-based, distributed address space, message passing
multiprocessor architecture [4].

« The Poligon system [9, 8]. Poligon is a demon-driven system derived
from the blackboard model of problem solving.

o The CAGE system [1, 8]. CAGE is a concurrent descendant of the
AGE serial blackboard framework.

Each of the implemented applications will be executed and evaluated using various
input data sets and varying numbers of processors.

Application code written in either LAMINA or Poligon compiles to code which
executes on the CARE architecture. CAGE, however, is targeted toward a single
address space, shared variable multiprocessor architecture. CAGE is implemented in
QLisp, a concurrent Lisp for shared variable multiprocessors. To support CAGE we
had to develop a multiprocessor "blackboard machine” variant of CARE. This
blackboard machine models a shared variable architecture and inciudes the
mechanisms and instruments necessary to manage and study memory contention.
The architecture implements the blackboard and the control data structures in
global, shared memory. It directly supports the CAGE system and application code
written in QLisp.
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6.2 Experiment Status
During the past contract period we have:

1. Completed the implementation of the the Elint application in each of
the three concurrent programming systems.

2. Completed the development of the blackboard machine variant of CARE.
3. Developed an experiment plan for the comparative studies.

4. Developed a new measure of speedup as a function of the number of
processors in a multiprocessor system. This measure is useful for
evaluating system performance of real time applications and is based on
the concept of maximum sustainable input data rate.

5. Completed the first set of experiments for each of the three
programming systems.

7 The AIRTRAC Application

AIRTRAC [5] is the primary application driving our development of concurrent
knowledge-based system programming methodologies. Also, it is one of the basic
applications used for our multiprocessor architecture performance experiments.
AIRTRAC is a knowledge-based signal interpretation and information fusion
system. The system attempts to identify, track, and predict the future behavior of
aircraft. In particular, it attempts to recognize aircraft which might be engaged in
covert activity, for example, smuggling. The inputs to AIRTRAC are periodic radar
tracking system reports, a priori, filed flight plans for some aircraft, and occasional
intelligence reports about suspected covert activity.

AIRTRAC is designed to be sufficiently complex and realistic to adequately test
various ideas about concurrent problem solving on multiprocessor machine
architectures. The AIRTRAC application involves continuous input data streams,
typical of real-time signal interpretation problems. Such problems often require a
level of computational power two to three orders of magnitude beyond what is
currently available. Moreover, the application uses data-driven, expectation~driven
and model-driven styles of reasoning. These reasoning styles encompass a wide
range of paradigms in artificial intelligence.
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7.1 Overall Application System Structure

The overall system consists of radar collection sites and associated trackers, filed
flight plan sources, intelligence report sources, and the AIRTRAC system running
on a multiprocessor.

Output from each radar is fed to an associated tracker which produces periodic
track reports for input to AIRTRAC. A tracker detects aircraft, estimates their
positions and velocities, and assigns unique track identifiers. A tracker continues to
assign the same identifier if it believes that the received signal is due to the same
aircraft which was previously seen. Periodic reports from the tracker include the
scantime, track identifier, and the mean and covariance of the position and velocity
of the track. Because of tracker limitations, they usually lose a track when the
corresponding aircraft makes a significant maneuver such as turning sharply. A
tracker assigns different identifiers to the tracks before and after such a maneuver.
One of the tasks of AIRTRAC is to connect such "broken" tracks. Another
AIRTRAC task is to fuse multiple tracks which represent the same aircraft observed
from different radar sites.

A filed flight plan is information regarding the expected position at given times
of the flight path of an aircraft. Since filed flight plans are only estimates of
actual flight paths, their track information is less precise then actual observed track
data. Filed flight plans are usually available for cooperative aircraft. Intelligence
reports provide information about possible origins, possible destinations, and
possible flight times for aircraft engaged in covert activity. This information
typically embodies a "tip-off" about covert activity. Due to the sketchy nature of
the information, intelligence reports are even less precise than filed flight plans.
AIRTRAC attempts to fuse observed tracks, filed flight plans, and intelligence
reports which represent the flight path of the same aircraft.

7.2 AIRTRAC Organization

The AIRTRAC system is partitioned into three major modules. At the lowest
level of data abstraction, the Data Association Module accepts as input the periodic
output of the radar trackers. The primary task of the module is to abstract the
periodic track reports into sequences of straight-line Radar Track Segments that
represent (approximately) constant-heading, constant-velocity segments of an
aircraft's flight path. Other tasks of this module are to recognize when a track with
a new identifier is initiated, determine when sufficient evidence has been collected
for a track to confirm its existence with a given probability, and to recognize when
a track with a given identifier has been terminated.
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The Path Association Module receives the Radar Track Segments from the Data
Association Module. It attempts to “"connect” the segments into coherent tracks
representing the flight paths of the aircraft under observation. It then attempts to
fuse the tracks which correspond to the same aircraft observed from different radar
sites. The module also accepts as input filed flight plans and intelligence reports,
and it attempts to fuse the plans and reports with the observed tracks. The module
uses models of aircraft performance characteristics such as velocity, acceleration and
maneuverability to help form hypothesized flight paths. The Path Association
Module must deal with ambiguous data, and it maintains, if necessary, alternative
flight paths for an observed aircraft. For each alternative, hypothesized flight path,
the module maintains a measure of confidence in the hypothesis which rises as
more evidence is accumulated fitting the hypothesis and which falls if expected
behavior consistent with the hypothesis does not materialize.

The primary tasks of the Path Interpretation Module are to predict the future
behavior of observed aircraft and to identify aircraft which are engaged or might
engage in covert activity. The module takes into account the current and predicted
flight paths of the observed aircraft, information about existing airports, known
radar shadow regions, known flight corridors, and geographic and/or political
boundaries. It uses models of aircraft behavior that embody strategies and goals to
help form reasonable hypotheses.

7.3 AIRTRAC Status

The AIRTRAC Data Association Module and associated experiments were
completed during Phase One [6]. The experiments were performed using the
SIMPLE/CARE multiprocessor simulation system. They demonstrated that almost
linear speedup as a function of the number of processors can be achieved (at least
up to 100 processors) for a periodic data-driven knowledge-based system such as the
Data Association Module.

8 Multiprocessor Load Balancing Studies

One of the more difficult problems in actually realizing high levels of concurrent
execution of applications on multiprocessor systems is that of processor and/or
memory load balancing. Based on our experiments with concurrent knowledge-based
systems, the single largest impediment to achieving high utilization of
multiprocessing resources is localized processor and/or memory “hot spots.” That is,
processors or memory acess queues which are overloaded relative to the rest of the
system. Such hot spots result in many of the processors sitting idle awaiting

23




information from the overloaded resources. This load balancing problem is
particularly acute for concurrent applications such as signal interpretation where
there is significant dynamic (i.e., run-time) creation and destruction of processes
and data structures. This situation is in contrast to well-structured applications such
as finite element computations where all processes and data structures are known at
load-time,

8.1 Load Balancing Studies Status

Our work to date on load balancing has focused on non-adaptive schemes. That
is, schemes in which once a process is allocated to a processing site it remains there
throughout its life. In adaptive schemes active processes can migrate between
processing sites.

For our earliest ELINT-CAOS experiments [2], we used an extremely simple load
distribution scheme based or round-robin assignment of dynamically created objects
to processing sites. This scheme resulted in poor resource utilization, for example,
at best 25% average processor utilization for a 49 processing site CARE architecture.

We next experimented with various dynamic load distribution schemes employing
techniques such as each site keeping track of its (logically) immediate neighbor's
loads and using application domain knowledge to predict the lifetime and busyness
of dynamically created objects. These schemes resulted in, at best, very marginal
improvement over the round-robin scheme.

We then experimented with non-adaptive schemes based on random scattering of
dynamically created objects to processing sites. Surprisingly, this scheme performed
remarkably well relative to the earlier, more information intensive schemes. We are
currently using a variant of the random scattering scheme in which each processing
site is assigned an a' priori preference weight with respect to accepting dynamically
created objects. These weights are based on the distribution of load-time created
objects onto sites. The random distribution of dynamically created objects to sites
is skewed so as to respect this weighting.

Although this weighted random distribution scheme provides the most balanced
loads that we have achieved to date, it still results in significant underutilization of
machine resources. For example, we have achieved, at best, only about 50% average
processor utilization on 64 site CARE architectures.
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Summary

The Poligon! system is a new, domain-independent language and attendant support environ-
ment, which has been designed specifically for the implementation of applications using a
Blackboard-like problem-solving framework in a parallel computational environment.

This paper describes the Poligon system and the Poligon language, its salient and novel fea-
tures. Poligon is compared with other approaches to the programming of parallel systems.

1. Introduction

The larger project of which Poligon is only a small part will not be discussed here in any
detail. Design decisions made in other parts of the project will be held to be axiomatic,
though some mention of these decisions will be made in order to show the motivation for the
features of Poligon. The primary objective of the overall project is to achieve significant
speedup of knowledge based systems, particularly those directed at real-time signal understand-
ing.

The purpose of the Poligon language is to express the problem solving behaviour of human
experts in order to map them onto a problem solving framework, which will run on simulated
parallel hardware.

The fields of knowledge representation and problem solving are rich and complex. This
paper will not go into any great detail in describing the problem solving processes involved.
Poligon tries usefully to express knowledge both in a declarative and procedural sense, through
rules [Davis 77]; and in a structural sense, through the configuration of the solution space.
These will be described below.

Some crucial design criteria and early design commitments have affected the development of
Poligon, the consequences of which will be described in this paper. These can be summarised
as follows.

« Poligon is intended to be a language for both problem solving and the general pur-
pose programming necessary to support it.  Unlike most programs, Poligon
programs must also address the problems of real-time processing, including
asynchronous events and input data backup. Poligon, therefore, must assist in this
respect.

« The overall project's strategy is to solve problems significantly faster than existing
systems through the exploitation of parallelism. Poligon is targeted at a MIMD,
distributed-memory, message-passing machine with ~thousands of processors. This
hardware gives direct support for futures, remote objects and such efficient
message-passing strategies as Broadcast and Multicast so as to take full advantage
of its processor interconnection network.

« A consequence of the desire to achieve a significant order of parallelism in Poligon
programs is that many of the control mechanisms used in serial problem solving
systems, such as schedulers and event queues, have been discarded because they are
highly serial. Most actions in Poligon programs are, therefore, performed
asynchronously. Rules, the primary mechanism in Poligon for describing things and
for getting things done, are activated as daemons. Much of the work in Poligon is
aimed at providing mechanisms to cope with this chaotic behaviour.

This paper contains the following;

1he author gratefully acknowledges the support of the following funding agencies for this projectt DARPA/RADC,
under conbeu:cthggggg;BS-C-Oouz ASA, under contract number NCC 2-220; Boeing Computer Services, under con-
tract num - .




o A discussion of related work in parallel languages.
« A discussion of the design approach guiding the development of Poligon.

A description of the abstraction mechanisms provided by the Poligon system with
some small examples.

« Some concluding remarks.

« References for further reading on the subject.

1.1. Knowledge Representation and Problem Solving in Poligon

The primary purpose of this paper is to discuss the Poligon language. It is, however, not
possible completely to divorce this from the underlying hardware and from its purpose;
knowledge representation and problem solving.

Poligon can be described loosely as a "Blackboard System”. What this means in practice is
that the problem solving metaphor of Poligon is one of cooperating experts gathered around a
blackboard, posting ideas about their deductions on the blackboard. For an exposition on the
term “Blackboard System" the reader is encouraged to read [Nii 86). Poligon tries usefully to
express knowledge both in a declarative and procedural sense, through rules and functions; and
in a structural sense, through the configuration of the solution space on the blackboard. In
particular, the term "blackboard” will be used to describe the set of all of the nodes in the
solution space of the system.

The suggestion that Poligon is a blackboard system is a little controversial. There are a
number of respects in which this is not a satisfactory label. This term will, however, be used
freely from now on for lack of a better label. The reader is encouraged to substitute for the
term "Blackboard system” any term, such as "Frame System” which seems best to fit his mental
model of what is being described.

1.2. Poligon's Model of Parallelism
It seems appropriate here to describe Poligon's model of parallelism. In its simplest form
this can be thought of as 4n Element in the Solution Space as a Processor.

This gives some idea of the granularity that is being sought. It is, however, by no means the
most efficient way to implement Poligon. Poligon programs want to be able to execute rules
and parts of rules associated with a particular Node in the solution space in parallel. These
rule activations need processors, on which to execute.

Thus a modified version of Poligon's model of parallelism could be 4 Rule Activation as a
Process, with sufficient processors to cope with the parallelism exhibited by the rule during
its activation. This tends towards a mapping of solution space elements onto a cluster of
processors to service the rule activations. In practice, however, a number of nodes might be
folded over the same set of processors, either because nodes become quiescent or because the
load balancing in the system is sub-optimal.

2. Related Work

Work in this field falls into two distinct categories; work on parallel knowledge based sys-
tems and work on languages for parallel symbolic computation. The former is, at present, a
very sparse field and, will not be discussed here, though some references are given in § 6. The
latter is much more highly developed.

Much work is already being done on parallel languages for general computation. Amongst
these languages are Actors, MultiLisp and QLisp on the one hand and concurrent logic pro-
gramming languages and purely functional languages on the other. Often missing from this
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work is a thrust toward the investigation of large applications in parallel domains, for instance
the development of parallel knowledge representation and problem solving systems. This is, of
course, what Poligon attempts to do. This section will discuss briefly Actors, QLisp and Mul-
tilisp, since these are the parallel symbolic computation languages which are most relevant to
the development of Poligon and the software which lies beneath it

2.1. Actors

Actors [Hewitt 73] probably come the closest in their behaviour to Poligon, at least at an
implementation level. Actors are independent, asynchronously communicating objects. As is
the way with purely object oriented systems they communicate only through message passing
and have tightly defined operations. The mutual control of Actors an paratlelism is achieved
by the support of procedure call and coroutine model message passing. The modularity af-
forded by this sort of programming metaphor may well be especiaily useful for the program-
ming of distributed-memory, message-passing hardware, since having a close match between the
hardware and software metaphors is likely to achieve better performance. It is not in any way
surprising that the operating system level software, which underlies Poligon, is founded on
many of the same principles as Actors. It has yet to be seen whether this programming
methodology is able in practice to extract significant amount of parallelism from problems,
though clearly this project hopes that it is.

2.2. MultiLisp and QLisp

MultiLisp [Halstead 84] and QLisp [Gabriel 84] are lumped together because, at least in
some senses, they have strong generic resemblances. They are both, at the user level, extensions
to existing Lisp dialects which provide mechanisms for the expression of parallelism, such as
parallel Let constructs and parallel function argument evaluation (QLet and PCall). It is as-
sumed by both of these systems that the hardware at which they are targeted is a form of
shared-memory multiprocessor. Although there is no particular reason why such systems could
not be implemented on a distributed-memory system, they are optimised for shared-memory
multiprocessors. These are currently the most readily available form of multiprocessor. They
would, however, need significant extensions in order to be able to exploit a distributed~memory
system as is shown in CAREL [Davies 86], an implementation of QLisp for distributed-
memory machines., The assumption of shared-memory, MIMD processors in these systems im-
poses constraints on the languages. They assume, at least to an extent, that processes will be
expensive and that the user must have control over their creation. Poligon assumes quite the
opposite.

3. The Design of Poligon

Poligon will be discussed first in terms of the way in which the language relates to the
problems being solved and its underlying systems. Next the language will be discussed in terms
of the requirements for languages in general and parallel languages in particular.

3.1. Background and Motivation

The philosophy behind the design of Poligon comes from intellectual and pragmatic pres-
sures. It attempts to steer a middle course between the extreme ourism of applicativists and
the extreme pragmatism of the proponents of side-eff~cts.

From the outset, the project was oriented towards real-time probler~ solving. Blackboard sys-
tems are well known to be of interest as tools in the knowledge engineer's toolkit. Little work
has been done to investigate the appropriateness of the blackboard riewaphor to parallel execu-
tion or the meaning of parallel blackboard systems, though it is frequently claimed that they
are full of latent parallelism. The excellent formal properties of pure applicative and logic
languages may well be of little use in a system which, for whatever reasons, needs to express
side-effects and which has to cope with real-time constraints. Poligon i» a system in which
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some of the formal rigour of truly applicativg systems has been put aside in favour of a prag-
matic approach to the exploitation of parallelism.

The BBI1 project [Hayes-Roth 85], also a project at the HPP, is an attempt to investigate the
behaviour of highly controlled problem solving systems. It attempts to use a great deal of
meta-knowledge and makes significant use of globality of reference in order to support an
holistic view of its solution space, thus providing a basis for meta-level reasoning. The
Poligon project is an attempt to investigate quite the reverse. Poligon has very little support
for meta-knowledge and allows no global data or global view of the solution space whatsoever.
The purpose of this experiment is to determine whether a system, unconstrained by a great deal
of serialising control knowledge, might still be able to find useful answers faster than an
highly controlled system, such as BB1, which would be extremely difficult to speed up sig-
nificantly through parallelism,

The Poligon system pictures the elements in its solution space as processes resident on
processors distributed across a grid, with the code necessary for them intimately associated with
them. Because no global control is permitted in Poligon the activation of rules is necessarily
completely daemon-driven.

The project hopes to achieve significant speed-up through parallelism. This can be done
only if much parallelism is extracted from the problem. Ideally, the system would try to ach-
ieve its parallelism by exploiting parallelism in the program's implementation at a very fine
grain. This can, in principle, extract the maximum amount of parallelism available. On its
own it has drawbacks, however. The costs of processes and the problems of synchronisation at
a fine grain size make it difficult to exploit such parallelism without the use of hardware
mechanisms significantly different from those available with prevailing technologies. This ap-
proach is also only part of the story. It neglects the fact that a properly parallel decomposi-
tion of the source problem is crucial to finding a lot of parallelism. One could summarise the
problems, therefore, as expressing the problem in a sufficiently parallel fashion and the match-
ing of the parallelism in the program to the grain size of the underlying hardware. Poligon
addresses these issues.

Parallelism is very hard to find in conventional programs. Applicative systems have an ad-
vantage in this respect because of their relative lack of need to express parallelism explicitly.
Their unchanging semantics when parallelism is introduced eases matters considerably. Poligon
has attempted to learn from this and has pure applicative semantics in a number of areas but
takes a different approach to the finding of paralleiism in programs. It attempts to execute
everything in parallel that it can and leaves it to the programmer to find any serial depen-
dencies.

When the parallelism in a program is user-defined, problems can result from an in-
appropriate match between the granularity of the parallelism expressed in the program and the
granularity of the underlying machine. In systems of the size and complexity of a typical
Poligon application such a match would be particularly difficult to find because of the large
number of processors involved and because it would be difficult for the user to keep track of
the location of his data in the processor array. These characteristics are a consequence of the
highly variable and data dependent state of the solution space in such programs. Poligon, be-
cause of its structure, should be able largely to obviate such granularity mismatches because
parallelism is defined and controiled by the system and the Poligon system is closely matched
to the granularity of the underlying system.

It is often thought that problems suitable for solution by means of the blackboard model
tend to partition their solution spaces into what look rather like pipe-lines, Pipe-lines are, of
course a well known form of parallelism. In practice pipes in such systems are not pipes in
the normal sense, since they are more like "leaky” pipes. It is one of the prime objectives of
these systems to reduce the amount of data as it percolates up through the abstraction hierarchy
of the solution space. Because of the reduction in the data rate flowing in these pipes the
contention problems that one might expect when pipes are connected into trees, as they often
are, are alleviated.
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A significant limitation of the performance of pipelines is that, at best, the parallelism that
they can produce is proportional to the length of the pipe. This would typically be only of
the order of half a dozen sections. This is clearly not the "orders of magnitude” of perfor-
mance improvement that we all hope for. In practice, though, given a large enough probiem, it
is often possible to set up a large number of these pipes side-by-side. It is one of the major
objectives of the Poligon language to encourage, facilitate and reward the decomposition of
problems so that this form of independence can be exploited, so that such pipes will be created
by the system.

3.2. Language Requirements

Poligon is a language which is by no means directed at general computation. It is neverthe-
less intended to be used for the solution of large, complex problems on distributed~-memory
parallel hardware. The following is a brief list of the ways in which Poligon attempts to ad-
dress some of the primary requirements of programming languages.

« The language should provide a tangible method of expressing the ideas of the
programmer.

The Poligon ianguage has been written with considerable input from those with ex-
perience in problem solving systems in the application domains at which it is tar-
geted. It is therefore intended to match the ideas of the "Expert”, whose knowledge
is to be encoded, but in a domain independent way.

« The compiler? should provide a mapping between the language and the underlying
systems, be they hardware or software.

Poligon's compiler compiles Poligon language source into code understood by the
underlying Lisp system and the concurrent object-oriented operating system running
on its target hardware.

o The language should abstract the programmer from its underlying systems.

The Poligon system shields the user from all aspects of the underlying hardware
such as the topology of the processor network, the message-passing behaviour of the
hardware and the location of any code or data within the network.

o The language should provide mechanisms for the exploitation of the underlying
systems to good effect.

The underlying hardware and software systems are exploited in a number of ways in
Poligon.  Firstly the language encourages the user naturally to decompose his
problem into a form which will map efficiently onto the underlying hardware.
Secondly the language offers a number of application~-independent, high-level con-
structs, which are designed to exploit the hardware to the full. These topics are
covered more fully in § 4.

+ The language should allow the development of software faster than would be the
case if it were to be developed in a less abstract form.

Considerable effort has been spent on making the Poligon language a high level way
to describe the solutions to parallel knowledge based system problems. A high level
language with such features as infix, user-definable operators and user definable
syntax, provides a natural way for the expert to implement his knowledge.

Much effort has been spent also on integrating the Poligon system cleanly into the
program support environment of the Lisp Machines on which it runs. For instance,
incremental compilation is supported from within the editor.

7"l‘l\e term Compiler is used in its most general sense here, perhaps an interpreter or a machine which is clever
enough to execute the language specified directly.
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o The language should assist the development of reliable, maintainable and modular
sof tware.

Language features are provided to minimise the possibility of inconsistent
modifications to the source code and the structure of the language and its semantics
are defined in a manner which minimises the probability of complex bugs being
introduced by asynchronous side-effects.

A sophisticated set of debugging facilities is provided. A system that emulates the
semantics of full, parallel Poligon programs as closely as possible in a serial en-
vironment has been produced. The user is able to debug his program serially to
remove all possible serial bugs and bugs due to the non-deterministic execution or-
der of Poligon programs before it is ported to the full parallel environment.

In addition to these requirements a language targeted at parallel hardware should have a
number of attributes which reflect the parallel nature of the target hardware.

o The language should address the granularity of the hardware.

Poligon is closely matched to the granularity of the hardware at which it is targeted.
It is generally expected that the solution space of the problems addressed by Poligon
programs will have of the order of thousands of nodes. This is of the same order
as the granularity of the hardware.

« The language should provide a mechanism for the extraction of parallelism from
programs and from the programmer.

Poligon extracts parallelism from programs and the programmer in two main ways,
First the decomposition of the problem is encouraged to be as modular as possible.
Secondly the semantics of Poligon programs are such that almost all of the program
can be executed in parallel without changing their behaviour from that seen during
serial execution. This allows the system to execute most operations in parallel if it
has the resources to do so.

« The language should, where appropriate, shield the programmer from those details
of the hardware which are particular to parallel computing engines, such as topol-~

ogy.

The hardware, on which Poligon programs runs, causes Poligon programs to have to
cope with communication between solution space elements on different processor
sites. All such message passing is hidden from the user. In fact the Poligon lan-
guage has no concept of message-passing at all.

Futures are used for all remote operations in the user's program. The hardware
implements these such that there is no efficiency penalty associated with creating
futures for such remote accesses. The Poligon language copes with these invisibly
to the programmer,

As can be seen quite easily from the above one of the factors that must be well understood
before a language is designed is the general purpose of the language and the level of generality
that is expected of programs written in it. A language, whose sole purpose is the expression of
solutions to huge matrix problems on systolic hardware might well be justified in expecting the
programmer to express, at quite a low level, the mapping of the program onto the hardware
provided. This is less likely to be a reasonable expectation of a language targeted at the solu-
tion of large, complex problems of an unpredicatable, dynamically-varying or data-dependent
nature. Poligon is a fairly general purpose programming language with a very definite bias.

4. Abstractions in Poligon
To cope with Poligon's view of parallelism and with the chaotic execution of rules (see § 1) a
number of linguistic abstractions are provided.
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Poligon provides abstractions for knowledge representation, control, data, parallelising, real-
time and side-effect control. These will be described briefly in this section.

4.1. Knowledge Representation )
Knowledge is traditionally represented in blackboard systems in a number of ways, listed
below.

o Declarative Knowledge is encoded in Rules.
o Procedural Knowledge is encoded in procedures.

« Knowledge concerning the sequencing of activities is encoded in the scheduling
mechanism.

« Knowledge about the structure of the solution space is encoded by the definition of
the structure of the blackboard.

« Knowledge about relationships between the objects in the system is often encoded
using a Link mechanism.

These all represent knowledge about the application domain. In addition, there is in any
program a large body of implicit knowledge concerning the semantics of assignment, sequenc-
ing and the system's function as a whole, especially in for systems with poor formal properties.
This will not be discussed here. The Poligon language does, however, go to considerable effort
to make the semantics of the Poligon system as clear as possible.

4.1.1. Declarative Knowledge

The_encoding of Declarative Knowledge in blackboard systems is conventionally done in
Rules3, which exist within scheduling units known as Knowledge Sources. Poligon also has the
concept of Rules and Knowledge Sources, though their meaning is somewhat different. Unlike
serial blackboard systems, the rules in a Poligon system are activated autonomously and
asynchronously.

Existing blackboard systems usually suffer from a confusion and overloading in the semantics
and purpose of knowledge sources. It is useful to collect one's knowledge of one subject
together into one chunk. These chunks are knowledge sources. Sadly, the implementors of
blackboard system frameworks often think of knowledge sources as scheduling units and thus
design their scheduling strategies around the idea of the "invocation of knowledge sources”,
even though it is by no means necessarily the case that it is appropriate to schedule all of
knowledge in a chunk at the same iime. This has a detrimental effect on the modularity of
the system,

In Poligon, knowledge sources are used as linguistic and software engineering abstractions
provided for the programmer in order to allow him to collect related knowledge together.
There are no scheduling semantics associated with knowledge sources in Poligon. Because of
the underlying system's daemon-like rule triggering mechanism the rule writer is allowed com-
pletely to decouple the concept of scheduling from the concept of chunks of knowledge.

Rules are activated as a result of "events” happening to the fields of nodes (see § 4.3.1).
These events can be caused either by a write operation to a field, by 2 semaphore being waved
at a field or by the reai-time clock.

A powerful Expectation mechanism is provided, which allows the dynamic placement .and
specialisation of rules. An Expectation is a way of expressing model-based knowledge. Given

Mhe term Rule is used here in the sense of "Pattern/Action pairs”. It should be not=d that these are quite unlike
the structures called rules used, for instance, in Pro Pattern/Action rules move towards a solution to their problem
by pesforming side-effects on their environment, in this case the blackboard, not through unification.
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a particular model of the behaviour of a system, certain changes might be expected if the
model's interpretation of the world is correct. Expectations allow such changes to be watched
and even allow their associated rules to be triggered if the changes do not happen in a given
time. Such expectations can be placed to watch for events happening, or not happening, in
specific places on the blackboard, at specific times. [Expectations provide a focussing
mechanism* and, coupled with the system’s ability to trigger’ rules and "time-out” unsatisfied
Expectations on the basis of the real-time clock, Poligon allows complex time-critical
knowledge to be expressed and applied simply.

An example rule is shown in figure 4-1.

4.1.2. Procedural Knowledge

Procedural Knowledge is an all encompassing term usually used indiscriminately to describe
both knowledge about the relationships between values (Functions) and the mechanisms for
performing side-effects and for sequencing events (Procedures). This is often a result of such
systems being built on top of Lisp systems, which fail to draw distinctions between procedures
with side-effects and those without. Poligon does not allow the encoding of arbitrary
knowledge into procedures. Only side-effect free functions are allowed. Side-effects are per-
mitted only in the bodies of rules, where they can be controlled.

4.1.3. The Sequencing of Activities

In most blackboard systems knowledge of the required sequencing of events at a macroscopic
level is expressed by the implementation of the system's scheduler. In many cases, such as
AGE [Nii 79] this scheduler has fixed characteristics and the application has a fixed interface
to it. In others, such as MXA [Rice 84], the user can specify the characteristics of the
scheduling of knowledge sources. Poligon provides no such mechanism. Since all rules are ac-
tivated as daemons, entirely asynchronously, the only analogue of scheduling is the implicit se-
quencing of the activation of rules due to some rules causing changes that trigger other's rules.

4.1.4, The Structure of the Solution Space

Poligon is unlike most blackboard systems in this respect. Most blackboard systems partition
the blackboard into Levels, which represent the hierarchy of abstraction in the solution space.
Poligon uses a much more general representation which is like that of some Frame systems,
providing a "Class” mechanism with user defined classes and metaclasses, and compile-time and
run-time inheritance. The functionality of the class mechanism in Poligon is a superset of
that of the levels provided by most blackboard systems. The programmer can, of course,
represent his solution simply using classes as levels in Poligon if he wishes., Classes are dis-
cussed more in § 4.3.1.

4.1.5. Knowledge about Relationships

Relationships between entities in blackboard systems are often expressed by a form of Link
mechanism. Sometimes this link is not so much a part of the system as a reflection of the
fact that fields in nodes can have as their values other nodes in the system. Other systems
have more sophisticated mechanisms that express links explicitly and allow property inheritance
along links, e.g. BBI, or the propagation of likelihood, e.g. MXA.

Poligon has a number of system defined relationships; "Is an Instance of™, "Is a part of" and
"Is a subclass of”. The user can define arbitrary relationships between nodes on the black-
board. These links allow property inheritance and are, themselves, represented as nodes and so

41t should be noted that the term Focussing mechanism is used in a more general sense than by many blackboard
systems. There can be any number of such foci all acting in parallel in a Poligon program. The expectation
mechanism is another way of applying knowledge in order to take advantage of some local circumstances in order to
solve a problem more efficiently or cleanly.

5A rule is said to have been Triggered when it is activated so that it tries to evaluate its preconditions and body.
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The following is » trivial example rule, which shows & small set of the features of Poligon. This rule
could be interpreted as saying; "/f the most recent iwo phonemes that have been seen are “oo” and "ph”
then the wor? is "foo". Having concluded this the rule finds the set of sentence components, which
represent potential conclusions the word “foo", and sets them so that they are no longer marked as
hypothetical. Tt also makes a Sentence-Componens type node, which represents the word "foo”, which has
been found.

Rule : Find-the-word-Foo
Class : Phoneme
Class of nodes with which the rule will be associated )}
Flield : uncorrelated-phonemes
{ Try to activate this rule when this fieid ts changed )

Definitions :
all-phonemes-in-order = Tho-Phoantuncorn’lat-d-phonmn

{ The operator "1* returns all values in a field 1n )
time order. The-Phoneme represents the node, that )
triggered this rule }

most-recent~phoneme =2 all-phonemes-in-order-Head

next-most-recent-phoneme == all-phc.emes-in-order -Tail-Head
Head and Tail are 1ike CAR and CDR only they operate )}
on lists, Lazy lists and Bags )}

Condition Part :
when : all-phonemes-in-order-length-of-Ttst > 2
{ The "When" part s a locally evaluable precondition }
17 : most-recent-phoneme-Sound = "oo” -
And next-most-recent-phoneme-Sound = “ph"
{ The precondition for the Rule )

Action Part :
Definitions :
new-sentence-component == New Inatance of Sentence-Component
{ The creation of the new Sentence-Component node }
hypothetical-foos ==
{ A Bag of words, which are "foo” }
Subset of Words which satisfies

A{a-word)
a-word-hypothetised And a-word-letters = [ f 0 0 ]
End)

ch { Process all elements in the Bag hypothetical-foos )}
anges :
n Parallel for each a-word in hypothettical-foos
Change T‘vlpo : Update
Updated Node : a-word
Updated Fields : hypothetised ¢ nil

Set fields of new sentence component in z
parsllel with updating the elements in the Bag }

Changes :
hange ‘l"po : Update
Updated Node : new-gsentence-component
Updated Fielda : Tetters « [ f 0 0

constituents + List(next-most-recent-phoneme,
most~recent~phoneme)

All of the actions taken by this rule are performed in paraliel, since they are independent of one another,
though there is, of course, a serial dependency between the condition part and the action part of the rule

Figure 4-1: An example Poligon rule

can have attributes in the same way that any other nodes can. l.inks are therefore first-class
citizens in Poligon and they allow Poligon programs to act like semantic nets.
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4.2. Control Abstractions

The flow of control is a rather evanescent concept in a Poligon program. Any rule can be
triggered at any time. It is important not to think of the control flow in a Poligon program
in the same terms as that of a conventional serial program. There is a well defined flow of
control within rules; the action part of & rule is activated after the condition part, upon which
it is predicated. Apart from tiis, however, there is no flow of control in any normal sense. It
should be noted also that what little flow of control there is only specifies the strict ordering
of activities. The execution of a sequence of actions can be interrupted at any time. The size
of the atoms for Poligon’'s atomic actions is very small.

The triggering of rules is controlled by the user associating rules with particular fields of
nodes or classes of nodes on the blackboard. The triggering of rules occurs when a field,
which is being watched in such a manner, is updated or is semaphored. A semaphore
mechanism is provided to allow rules to be triggered without a field being updated. This
provides a form of explicit event-based programming, if it is needed.

Clearly one of the objectives of the design of the Poligon language is to provide a language
in which it is simple to express logically distinct pieces of knowledge, independent of other
such pieces of knowledge. The decomposition of the problem in this manner causes the system
to appear to iterate towards the solution of its problem by small, simple and discrete steps,
rather than by complex, giant leaps.

4.3. Data Abstractions
Poligon provides a number of distinct data abstractions. One is characteristic of other black-
board systems, one of pure functional languages and one is rather novel.

o The structure of the blackboard is characterised by being made of Nodes, elements
in the solution space. These have a user-defined, record-like structure.

+ Lazy evaluation is supported.
» Bags are supported as data structures, which parallelism enhancing.

Numerous operations are defined for these data abstractions, particularly a number of generic
operations which can be applied to lists, lazy lists and bags, which shield the user from the un-
derlying data structures used by the system or by other segments of his program.

4.3.1. The Structure of the Solution Space

The most obvious data abstraction provided by Poligon is similar to that provided by con-
ventional blackboard systems, that is, the Node on the blackboard as an element in the solution
space. Such nodes are record-like internally. They have named fields, which can often contain
multiple values to be associated with that name. Poligon provides this but also goes beyond it.

Conventional blackboard systems, such as AGE, tend to provide nodes on a blackboard
divided into groups, often called "Levels”. "Levels” themselves are not represented. Arbitrary
use of global data, held in global variables, distinct from the blackboard is also allowed.

Poligon has a much more regular representation for data. The nodes are represented as in-
stances of Classes. The Classes themselves are represented as Nodes, which "control” their in-
stances. Knowledge concerned with classes as a whole can be associated with these nodes.
Shared, global variables are not allowed in Poligon.

Poligon also provides;

Superclasses Classes that provide characteristics to the instances of classes. These can be
thought of as templates for the instances.

Metaclasses Classes that provide characteristics to the classes themselves. These can be
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thought of as templates for the classes.

Thus the classes are themselves instances of metaclasses, which can be user defined, such that
instances of a given class can have any number of superclasses, i.e. component templates, and
any number of metaclasses, i.e. component templates for their parent class. It is possible to
instantiate classes any number of times, as well as their instances.

Automatic property inheritance allows shared daga to be located on locally central nodes,
which are immediately visible to the inter&tqd parties. This d.siwibutes shared data in such a
manner as will, hopefully, minimise hot-spotting.

An example class declaration, the specification of a template for a class of nodes, is shown
below. The declaration defines a class of nodes called Words, each instance of which has two
fields (slots) called Letters and Sound.

Class Vords :
Fields :
Letters
Sound

Extensions to this sort of syntax allows the definition of superclasses and metaclasses within
class declarations. The following example defines the class Sheep. Each instance of the class
Sheep will have the characteristics defined for sheep and for mammals. The class called Sheep
(an instance, in fact, of the class Meta-Sheep) has the characteristics of types of animals.

Class T{pon-of-un1m113 :
Fields :
Rate-0f-Breeding

Class Mammals :
Flelds :
Colour-of-fur
Number-of-legs : 4

Class Sheep :
Metaclasses : Types-of-animals
Superclasses : Mammals
Fields :
Thickness-of-woo)
Flock

4.3.2. Lazy Evaluation

Lazy Evaluation is supported in the guise of Lazy Lists, Lazy Function Arguments and in the
form of the lazy association of expressions with names. The following is an example of the
lazy association of a name with a value. The name A-Meaningful-Name is associated with the

value of the call to the function An-Expensive-FunctionS.

Oefinitions :
A-Meaningful-Name =
An-Expensive-Function(an~arg, anather-arg)

The value of an item defined in a Definitions construct is always a future if it is possible to
evaluate it as a future.

6Snitable Forece operstions are provided so that the time of evaluation can be controlled by the program if necessary.
These force operators allow the program to perform Eager Evaluation if it is needed.
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4.3.3. Ba

One ab';'traction suited particularly to the parallel mode of execution of Poligon programs is
the Bag data type. Bags are implemented in Poligon so that they are formed as the result of
efficient parallel operations and can be processed in parallel efficiently. Even when the ele-
ments of Bags are processed serially they perform efficiently. The lack of a defined ordering-
in the Bag means that the system can always return the first satisfied Future out of a Bag of
Futures, causing minimum waiting for values. Similarly, when a program attempts to extract
an element from a bag and there are no satisfied elements the process in which this happens
will go to sleep until the next available future is satisfied.

A Bag is generated, for instance, as the value of the following expression. It is a Bag, which
contains all of the Words, whose Sound is "phoo™’.

Subset of Words For Which Element - Sound = “phoo”

4.4. Parallelising Abstractions

Poligon supports data representations which are designed to give the user a high level handle
on the exploitation of parallelism. Most values computed in Poligon are derived as Futures.
Computation is decoupled from the expressions which reference values. Futures are, however,
completely invisible to the user in Poligon. It understands which functions are strict in their
arguments and so waits for the satisfaction of a Future only when it is required. The
programmer can, of course, declare his own non-strict functions and operators. All DeFuturing
coercions are performed automatically by the Poligon system. Thus the following expression
will deliver a list with two elements, one of which is the value of a and one of which is the
sum of b and c. The first will be a future, if g is. The second will be the DeFutured value
b+c.

List{a, b+c)

The efficient use of the bandwidth of the processor interconnection network is enhanced by
the use of Broadcast and Multicast operations. Broadcast messages allow messages to be sent
to every node in the system in a single operation. Multicast messages allow messages to be
sent to a collection of nodes in a single operation. The Poligon system uses these extensively
in the processing of the Bag data type and in the execution of groups of actions in parallel. It
uses the same mechanisms to provide an efficient implementation for searching a collection of
nodes on the blackboard for patterns, which tends to cause significant slowing of serial im-
plementations because of the combinatorial nature of such searches. It allows the blackboard
to be searched for bags of matching nodes in a single, fast operation. This provides a sig-
nificant improvement over the serial construction of such collections.

4.5. Real-time processing

Real-time processing brings its own problems. Poligon provides a simple and regular
mechanism for defining the interface between the Poligon system and its signal data. This
data can be from an arbitrary number of different types of sources and is posted on the
blackboard asynchronously.

Poligon aiso provides a mechanism by which each datum is timestamped from the time that
it enters the system. These timestamps are propagated automatically by the system so that it is
trivial for the programmer to manipulate time-ordered collections of values. This mechanism
is required because the conventional implicit time ordering of data in lists cannot apply here

7The expression "Element - Sound” denotes extracting one of the values associated with the "Sound"_field of the
potential element in the bag. ™" is an operator that selects which of the values associated with the field is to be
delivered.
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and the non-ordered nature of Bags is sometimes not sufficient.

4.6. The control of assignment

Assignment is something which is likely to cause significant problems in any parallel system.
Poligon constrains assignment in a number of ways. Side-effects are only permitted on the
fields of nodes. All side-effects can be monitored by rules that might be interested in the
changes to values. This removes the possibility of the knowledge base getting confused because
of surgical side-effects to data structures at arbitrary times and at arbitrary places in the
processor network. Assignment is also constrained so that all of the updates to the fields of a
given node are done atomically, before any rules which might be triggered by these changes are
allowed to trigger. Such atomicity helps to preserve the consistency of the system.

An example of a collection of updates to fields of a given node is given below. In this ex-
ample the node an-instance-of-words is having two of its fields updated; Sound and Letters.
Operators, such as "«”, allow different sorts of modifications to be made to fields. Such
operations might be "add this value to the values in this field" or "replace all of the values in
the field”. This avoids complex and potentially expensive expressions in the old value of the
field being evaluated non-locally.

Change T‘pc : Update

Updated Node : an-tnstance-of-words

Updated Fields : Sound ¢« “"phoo”
Letters + [ f 00 ]

5. Conclusions

This paper has described Poligon, a language and system for the investigation of problem
solving on distributed-memory, parallel hardware. The language was described in the context
of related work in the field and in terms of the abstraction mechanisms provided. No sig-
nificant description of the underlying run~time support has been given.

The Poligon system is still young. Only recently have applications been mounted on it in
earnest. Two distinct applications in the field of real-time signal processing are now being
implemented and more applications are likely to be started in the near future. Poligon has
proved to be well suited to these applications as far as they have gone. No results from the
simulation process regarding the performance of Poligon programs are yet available. Sig-
nificant problems have been found in the simulation of the fine-grained parallelism required
by the Poligon metaphor. Such simulations are very time consuming, prone to bugs in the un-
derlying system software and simulator, and are difficult to debug. It is for these reasons that
Poligon also has a serial version, Oligon, which accurately emulates the behaviour of the paral-
lel system but without true parailelism. A simulated processor array of 256 processors has
recently been made available to the users of Poligon. This simulation will allow more satisfac-
tory investigation of the properties of Poligon programs in the future.

6. Further Reading

For a significantly more detailed treatment of the Poligon language and system the reader is
encouraged to consult [Rice 86].

The following topics were not described or discussed but are relevant to the work described
above. The reader is encouraged to consult the following for further information;

o [KSL 85] for a description of the Advanced Architectures Project of which
Poligon is a part.

o [Delagi 86] for a description of CARE, the hardware simulator used by Poligon,
and of the particular hardware being simulated.
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» [Schoen 86] for a description of CAQS, the concurrent object oriented system run-
ning on the CARE machine, which Poligon uses as its operating system,

o [Ensor 85], [Lesser 83], [Aiello 86] and [Fennel 77] for other approaches to
parallel problem solving using blackboard systems.
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Abstract

This report documents an experiment investigating the potential of a parzllel computing
architecture to enhance the performance of a knowledge-based signal understanding system.
The experiment consisted of implementing and evaluating an application encoded in a parallel

programming extension of Lisp and executing on a simulated multiprocessor system.

The choosen application for the experiment was a knowledge-based system for interpreting
pre-processed, passively acquired radar emissions from aircraft. The application was
implemented in an experimental concurrent, asynchronous object-oriented framework. This
framework, in turn, relied on the services provided by the underlying hardware system. The
hardware system for the experiment was a simulation of various sized grids of processors with

inter-processor communiczation via message-passing.

The experiment investigated the effects of various high-ievel control strategies on the quality
of the problem solution, the speedup of the overall system performance as a function of the
number of processors in the grid, and some of the issues in implementing and debugging a

knowledge-based system on a message-passing multiprocessor system.

In this report we describe the software and (simulated) hardware components of the experiment

and present the qualitative and quantitative experimental results,




1. Introduction
This report documents an experiment investigating the potential of a parallel computing
architecture to enhance the performance of a knowledge-based signal understanding system.

This experiment was done within the Expert Systems on Multiprocessor Architectures Project

of Stanford University’'s Knowledge Systems Laboratory.

The computational characteristics of complex knowledge-based systems are poorly understood,
especially in parallel computational environments. Our Architectures Project is performing a
number of experiments to try to gain some understanding of these characteristics and, in
particular, of the potential for concurrent execution of such systems. A primary goal of the
project is to develop software and hardware system architectures which exploit this concurrency
to increase the performance of knowledge-based signal understanding and information fusion

systems.

The Architectures Project is organized according to a hierarchy of computational abstraction
levels as shown in Table 1-1. Each experiment represents a narrow, vertical slice through these

levels and consists of a specific system choice for each level.

For the reported experiment, the choosen application is a knowledge-based ELINT (ELectronics
INTelligence) system for interpreting processed, passively acquired radar emissions from
aircraft.  The ELINT application is implemented in CAOS, an experimental concurrent,
asynchronous object-oriented framework built on Zetalisp [1]. The CAOS framework, in turn,
relies on the services provided by the underlying hardware system environment. For this
experiment, the hardware system environment is a simulation of a parallel architecture, called
CARE [2]. CARE simulates a communications grid of processing sites where each site
contains a Lisp evaluator, private memory, and a communications and process scheduling
subsystem.  Message-passing is the only means of inter-site communication. CARE is
simulated using a general, event-based simulator, SIMPLE [3]. SIMPLE is written in Zetalisp
and executes on a Symbolics 3600 or a Texas Instruments Explorer Lisp machine.! Figure

1-1 illustrates the relationship between the various software components of the experiment.

The ELINT-CAOS-CARE experiment investigated both qualitative and quantitative aspects of

the performance of the overall system. The CARE architecture uses dynamic, cut-through (as

lA version of the SIMPLE simulator which runs on a local area network of multiple Lisp machines has also been

implemented [4].
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Computational levels.

Level -

Research questions

Application

Problem-solving
framework

Knowledge
representation
and management

Where is the potential concurrency in knowledge-based
signal understanding tasks?

How does the problem solver reco;nize and express
application dependent concurrency

What are suitable framework constructs for organizing
and encoding concurrent signal understanding tasks?

‘What are appropriate granularities for knowiedge,
knowledge application and data to maximize concurrency?

What types of strategies for control of knowledge application
are needed to assure acceptable solution quality without
introducing excessive execution serialization?

‘What kinds of knowledge representation mechanisms are
suitable for exploiting concurrency in inference and search?

System How can general-purpose symbolic programming languages

programming be extended to support concurrency and help manage the

language resource allocation and reclamation tasks on a distnbuted
memory multiprocessor?

Hardware ‘What multiprocessor architectures best support the

system organization and concurrency in knowledge-based

architecture

signal understanding applications?

opposed to store and forward) routing through the communication grid for interprocessor
message transmission. Message transmission time is indeterminate. As a consequence, without
the imposition of significant message sequencing protocols (and the corresponding serialization
of execution), operations are intrinsically non-deterministic in the sense that two executions of
the same program on the same input data can result in different problem solutions depending
on different message arrival orders. For many knowledge~based systems, in particular, the
ELINT system, there is no such thing as the correct problem solution but only satisficing (i.e.,
acceptable) problem solutions. One primary objective of the experiment was to investigate the
trade-offs between the imposition of various synchronizations (and the resulting loss of
concurrency) and the quality of the problem solution. A second primary objective was the
more usual investigation of the speedup of the overall system performance as a function of the
number of processing sites in the CARE grid. A third objective was to gain some
understanding of the difficulties in implementing and debugging a reasonably complex
knowledge-based system on a multiple address space, message-passing multiprocessor system

such as that represented by CARE.
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ELINT Interpretation of radar
emissions from aircraft

CAOS Concurrent, asynchronous
object system

Zetalisp+ Zetalisp plus locality and
communication constructs

CARE Grid-based, message-passing
multiprocessor specification

SIMPLE Hardware specification system
and event-driven simulator

Zetalisp

Figure 1-1: The software component hierarchy of the experiment.

In the following sections we describe, in decreasing hierarchical order, each component of the
experiment. Section 2 describes the ELINT application. Section 3 gives an overview the
CAOS programming framework and its approach to concurrency. ELINT's implementation in
CAOS is described in Section 4, and Section 5 describes the salient features of the CARE
architecture and its simulation environment. In Section 6 we present the results of the
ELINT-CAOS-CARE experiment.

2. The ELINT Application

The driving application for our vertical slice experiment is a prototype, knowledge-based
ELINT system for interpreting processed, passively acquired, real-time radar emissions from
aircraft. This ELINT system is one component of a multi-sensor information fusion system,
TRICERO [5] developed several years ago. [ELINT was originally implemented in AGE [6],
an expert system development tool based on the blackboard paradigm [7, 8]. ELINT is a

relatively simple, but non-trivial, knowledge-based system. Much of its knowledge is

implemented procedurally. However, if ELINT had been implemented as a production rule
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system, we estimate that its knowledge base would consist of about one thousand rules.?

ELINT's basic analysis technique is to correlate a large number of passively observed radar
emissions into the smaller number of individual radar emitters producing those emissions. It
then correlates the emitters into the yet smaller number of clusters of co-located emitters.

ELINT maintains the track and activity histories of the clusters

2.1. ELINT's Inputs
The inputs to the ELINT system are multiple, time-ordered streams of processed observations

from multiple collection sites. Each observation is presented in a record format. The fields

of an input observation record are shown in Table 2-1.

Table 2-1: Elint observation record.

Field Contents
Observation-Time An integer time-tag indicating when
the radar emission was sampled
Observation-Site The symbolic name of the collection
- site acquiring the observation
Site-Location The positional coordinates of the
collection site at the time of observation
Emitter-Identifier An integer identifing the radar emitter
‘ producing the emission
Line-of-Bearing The line of bearing from the collection
site to the observed emitter
Emitter-Type A symbolic radar emitter type designator
Emitter-Mode The operational mode of the emitter at

the time of observation

Signal-Quality ' A symbolic indicator of the signal
quality of the observed emission

The Site-Location field is necessary since the collection sites ‘can be mobile. The
Emitter-Identifier is a unique integer identifier assigned by the collection sites to each distinct
observed emitter. This identifier is used by the collection sites to indicate multiple
observations of the same emitter both over time and from different collection sites. In

particular, two concurrent observations of the same emitter from different collection sites

2Iﬂ general, there are currently no adequate metrics for measuring the complexity of knowledge-based systems. One
crude measure used for rule-based systems is the number of rules. Although the number of rules does somewhat

indicate the amount of knowledge, it does not give much indication of the complexity of the reasoning.

________-#
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should have the same identifier. Both the intra-site and inter-site determination of whether
two observed emissions are from the same emitter are based on the electronic characteristics of
the emissions and on signature analysis. This determination may be in error, and the ELINT
system must cope with such identifier errors. The Emitter-Type of a radar emitter indicates
the functional class of the emitter, for example, Air-Intercept (AI), Navigation (NAV) or
Identification-Friend-Or-Foe (IFF), and, if known, the equipment type class of the emitter.
Certain classes of emitter types can have multiple operational modes. The Emitter-Mode, if
applicable, is emitter-type specific. For example, an Al radar can be either in Search Mode or
Lock-on Mode depending on whether it is scanning for a target or whether it is automatically
tracking a specific target. The Signal-Quality of an observation is a subjective, qualitative

measure of the strength of the observed emission, for example, strong, normal, or fading.

All of the input information required for the ELINT system is obtainable from the raw radar
signal data using current, passive radar signal collection and processing techniques. These

techniques are largely automated and employ special-purpose hardware.

2.2. ELINT's Outputs

The primary outputs of the ELINT system are periodic status reports about the tracks and
activities of clusters of emitters in the area under surveillance. A cluster is defined as a
collection of emitters which are co-located over time. That is, two emitters are in the same
cluster if for some given minimum number of consecutive time units (three in the current
ELINT system) their corresponding time-tagged locational fixes are within a distance
determined by the line-of-bearing resolution of the observation site equipment (one degree
resolution in the current ELINT system). Conceptually, two emitters are in the same cluster if
if they are on the same aircraft or are on two tactically associated and co-located (over time)

aircraft, for example, a lead aircraft and his wingman.3

The periodic output reports contain, for each cluster, information about the cluster’s current

3An aircraft can be operating with some (or all) of its radars off. In general, it is impossible to distinguish
between, for example, two co-located aircraft, one with an Al radar on and one with a NAV radar on, and one aircraft
with both its Al and NAYV radars on. Hence, our ELINT system does ils assessments based on emitter clusters rather

than aircraft.
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heading, position and track; an estimate of the number and types of aircraft in the cluster;* an
indication of the cluster's current activity; and an indication if the cluster represents an
immediate threat, for example, if it is withi» a certain proximity of a friendly aircraft, if its

Al radar is in Lock-on Mode, or if its missile guidance radar is on.

2.3. ELINT's Processing Flow
The basic reasoning strategy used by the ELINT application is data-driven accumulation of
evidence for the existence, the tracks, and the activities of emitters and clusters based on input

observations and infered information. The primary processing flow is a kind of pipeline

where the pipeline stages are observations, emitters and clusters.

Upon receipt of a new observation, the system first determines if the observed emission
matches (i.e., has as a source) a known emitter (i.e., an emitter on ELINT's "situation board").
This match is based on the Emitter-Identifier assigner by the collection site to the observation,
and it is verified using the emitter's charactéristics and its track and heading histories.

Depending on the outcome of the match, one of the following actions is taken:

1. If the observation does not match a known emitter, then a new emitter which is the
source of the observed emission is hypothesized on the situation board and

initialized from the information contained in the observation.

2. If the observation does match an emitter on the situation board and the match is
verified, then the information contained in the observation is used to update the
attributes of the matched emitter, including increasing the confidence level of the
hypothesis that the emitter represents. Moreover, if the new observation is the
second (or greater) observation of the emitter for the current time and it is from a
different collection site than the previous observation(s) at that time, then a
locational fix for the emitter is computed using the observed lines of bearing. If,
in addition, the Emitter-Type and/or Emitter-Mode indicate a near-term threat to a

friendly aircraft, then a threat report is output. '

4Knowledge relating an aircraft type, for example F-15 or MIG-3, with the number and types of radars it carries is
available. Using this knowledge and the identified emitter types in a cluster, it is possible to roughly estimate bounds

on the number and types of aircraft in the cluster.
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3. If the observation matches a known emitter but fails the match verification test,

then an error in the Emitter-Identifier is indicated and the situation board is

modified so as to undo any incorrect inferences based on the error. Also, an
identifier error report is output to the collection sites.
On a periodic basis, the status of each emitter on the situation board is evaluated and various
actions are taken:
1. If there have been no recent observations of the emitter, then the confidence level
of the emitter is reduced. If, as a consequence of this reduction, that level falls
below a given no-confidence threshold, then the emitter and all of the consequences

infered from it (including cluster association) are deleted from the situation board.

2. If the confidence level is above a given full-confidence threshold and the emitter is
not currently associated with a known cluster, then an attempt is made to match the
emitter with a cluster on the situation board. This match is based on the track and
heading histories and the type attributes of the emitter and the cluster. If a match
is made, then the emitter is associated with the matched cluster and the emitter's
current attributes are used to update the attributes of the cluster. If the match fails,
then a new cluster is hypothesized on the situation board and the emitter is

associated with it.

3. In the remaining case of a recently observed emitter with an associated cluster, the
current attributes of the emitter are used to update the attributes of its associated

cluster.

Also on a periodic basis, the state of each hypothesized cluster on the situation board is
examined. If all of the emitters associated with the cluster have been deleted, then the cluster

is deleted from the situation board. Otherwise:

1. The cluster is checked to see if it should be split into two (or more) clusters based
on the currrent locations of its associated emitters. If so, new clusters with the

appropriate associated emitters are hypothesized on the situation board.

2. The track history, hezding history, speed history and activity history of the cluster
are updated; and, if any new emitters have been recently associated with the cluster,

an estimate of the types and numbers of aircraft comprising the cluster is derived.
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3. A current status report for the cluster is output.
The ELINT processing flow lends itself naturally to concurrent execution. The paraliel
implementation of ELINT using CAOS is described in Section 4. The CAOS system itself is

described in the following section.

3. The CAOS Programming Framework

CAOS is a framework which supports the encoding and the execution of multiprocessor expert
systems. It represents an early attempt to bridge the gap between the application specification
and the multiprocessor system programming primitives. The design of CAOS is predicated on
the belief that many highly parallel architectures (e.g., hundreds of processors) will emphasize
limited communication between processor-memory pairs rather than uniformly shared memory.
We expect that such an architecture will favor relatively coarse-grained problem decomposition
with little synchronization between processors. CAOS is intended for use in real-time, data
interpretation applications such as continuous speech recognition and radar and sonar signal
interpretation (see, for example, [9, 10]). CAOS is based on an object-oriented programming

paradigm, and it draws many of its ideas from the Flavors system [1] and the Actors paradigm

[11].

A CAOS application consists of a collection of communicating, active agents, each responding
to a number of application-dependent, predeclared messages. An agent retains long-term local
state. Each agent is a multi-process entity, that is, an arbitrary number of processes may be
active at any one time in a single agent.’ Conceptually, an agent can be thought of as virtual,
multiprocess processor and memory pair. It responds to externally sent messages, and these
message responses can alter the state of its local memory and can include the sending of

messages (o other agents.

CAOS is designed to express parallelism at a relatively coarse grain-size. For example, in the
ELINT experiment, the message handlers (i.e, the methods) which implement the message
responses are written as Lisp procedures, each averaging about one hundred lines of primitive
Lisp code. CAOS supports no mechanism for finer-grained concurrency such as within the

execution of agent processes, but neither does it rule it out. We could easily imagine message

5'1'|\e active processes in an agent are not scheduled preemptively. Instead, an executing agent process either runs to

completion or until it is "blocked' awaiting some remote service {(see Section §5).
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methods being written, for example, in QLisp [12], a concurrent dialect of CommonLisp which

supports finer-grained concurrency.

3.1. CAOS’ Approach to Concurrency

A CAOS application is structured to achieve high degrees of concurrency in the application
execution in two principal manners: pipelining and replication. Pipelining is most appropriate
for representing the flow of information between levels of abstraction in an interpretation
system. Replication provides means by which the interpretation system can cope with

arbitrarily high data rates.

3.1.1. Pipelining

Pipelining is a common means of parallelizing tasks through a decomposition into a linear
sequence of concurrently operating stages. Each stage is assigned to a separate processing unit
which receives the output from the previous stage and provides input to the next stage.
Optimally, when the pipeline reaches a steady-state, each of the processérs is busy performing

its assigned stage of the overall task.

CAOS promotes the use of pipelines to partition an interpretation task into a sequence of
interpretation stages where each stage of the interpretation is performed by a separate agent.
As data enters one agent in the pipeline, it is processed, and the results are sent to the next

agent. The data input to each successive stage represents a higher level of abstraction.

Sequential decomposition of a large task is frequently very natural. Structures as disparate as
manufacturing assembly lines and the arithmetic processors of high-speed computing systems

are frequently based on this paradigm.

Pipelining provides a mechanism whereby concurrency is obtained without duplication of
mechanism (i.e.,, machinery, processing hardware, knowledge, etc.). In an optimal pipeline of n
processing elements, the throughput of the pipeline is n times the throughput of a single

processing element in the pipeline.

Unfortunately, it is often the case that a task cannot be decomposed into a simple linear
sequence of subtasks. Some stage of the sequence may depend not only on the results of its
immediate predecessor, but also on the resuits of more distant predecessors, or worse, some
distant successor (e.g., in feedback loops). An equally disadvantageous decomposition is one in
which some of the processing stages take substantially more time than others. The effect of

either of these conditions is to cause the pipeline to be used less efficiently. Both these
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conditions may cause some processing stages to be busier than others. In the worst case, some
stages may be so busy that other stages receive almost no work at all. As a result, the
n-element pipeline achieves less than an n-times increase in throughput. We discuss a partial

remedy for this situation below.

3.1.2. Replication
Concurrency gained through replication is ideally orthogonal to concurrency gained through

pipelining. Any size processing structure, from an individual processing element to an entire

pipeline, is a candidate for replication. Consider a task which must be performed on the
average in time ¢, and a processing structure which is able to perform the task in time T,
where T > t. If this task were actually a single stage in a larger pipeline, this stage would then
be a bottleneck in the throughput of the pipeline. However, if the single processing structure
which performed the task were replaced by 7/t copies of the same processing structure, the
effective time to perform the task would approach ¢, as required. Replication is more costly
than pipelining, but it does avoid some of the problems associated with developing a pipelined

decomposition of a task. ‘

Our work leads us to believe that such replicated computing structures are feasible, but not
without drawbacks. Just as performance gains in pipelines are impacted by inter-stage
dependencies, performance gains in replicated structures are impacted by inter-structure

dependencies.

Consider a system composed of a number of copies of a single pipeline. Further, assume the
actions of a particular stage in the pipeline affects each copy of itself in the other pipelines.
In an expert system, for example, a number of independent pieces of evidence may cause the
system to draw the same conclusion. The system designer may require that when a conclusion
is arrived at independently by different means, some measure of confidence in the conclusion
is increased accordingly. If the inference mechanism which produces these conclusions is
realized as concurrently operating copies of a single inference engine, the individual inference
engines will have to communicate between themselves to avoid producing multiple copies of
the same conclusion rather than a composite conclusion. Any consistency requirement between
copies of a processing structure decreases the throughput of the entire system, since a portion
of the system's work is dedicated to inter-system communication. Examples of this situation

are shown in Section 4 where we describe the CAOS agent types for the ELINT application.




3.2, Programming in CAOS

CAOS is basically a package of operators on top of Lisp. These operators are partitioned into
three major classes -- those which declare agent classes, those which initialize agents, and those
which support communication between agents. We now describe briefly the CAOS operators

for each of these classes. A more complete description of these operators is given in [13].

3.2.1. Declaration of Agents

Agents classes, like most object-oriented classes, are declared within an inheritance network.
Each agent class inherits the attributes of its (multiple) parents. The root CAOS agent class,
vanilla-agent, contains the minimal attributes required of a functional CAOS agent. All other
CAOS agents have the vanilla-agent as a parent, either directly or indirectly. Another
CAOS-declared agent class, process-agenda-agent, is a specialization of vanilla~agent, and
includes a priority mechanism for scheduling the execution of messages. The vanilla-agent

schedules its messages ir. a FIFO manner only.

Application agent classes are declared by augmenting the following primary attributes of

CAOS-declared or other ancestral agent classes:

Local-Variables: An instance agent’s local variables store its private state. The agent's message
handlers may refer freely to only those variables declared locally within the agent. Each local

variable may be declared with an initial value.

Messages-Methods: The only messages to which an agent may respond are those declared in the
agent's class declaration. Associated with each declared message name is the name of the
message’'s method (i.e., the message's message handler). In CAOS, a method name must refer to
a defined Lisp procedure. This declaration simplifies the task of a resource allocator which

must load application code onto each CARE site.

Clocks-Methods: An agent may periodically invoke actions based on internal clock "ticks." For
example, the periodic update of emitter agents and the periodic output of cluster status reports
are invoked by clock ticks. A clock is defined by its tick interval. Whenever an internal

agent clock ticks, the set of methods associated with that clock are scheduled for execution.

Critical-Methods: This attribute declares certain sets of methods as being mutually “critical
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regions" for their owning agents.® Each such set of critical methods has an associated /ock.
Before an owning agent agent executes a critical method, this lock is checked. If it is
unlocked, the agent locks it and executes the method. Upon completion of the method, the
agent unlocks the lock. If the lock is locked, the method is queued in a FIFO queue awaiting

the unlocking of the lock.

There are a number of additional basic agent attributes. However, most of these are used only
internally by CAOS.

3.2.2. Initialization of agents

An initial CAOS configuration is specified by a two-component initialization form. The first
component of the form creates the static agent instances. Some agent instances are created
during system initialization and exist throughout a CAOS run. Such agent instances are called
static agents as opposed to dynamic agents which are created (and possibly deleted) during
program execution. For programmer convenience, we allow code in agent message handlers and
default values of local-variables to reference such static agents by name. Before an agent
instance begins running, each symbolic reference to the declared static agents is resolved by the
CAOS runtimes.

The second component of the form is a list of expressions to be evaluated sequentially when
CAOS's static agent instantiation phase is complete. Each expression is intended to send a
message to one of the static agents declared in the first part of the form. These messages serve
to initialize the application. For example, in the ELINT application the initialization messages

open log files and start the processing of ELINT observations.

Agent instances may also be created dynamically during execution. The creation operator
accepts an agent class name and a location specification.” The remote-address of the
newly-created agent instance is returned. The remote-address of an agent includes the CARE

site coordinates where the agent resides and a pointer to the agent in the address space of that

6A design goal for ELINT in CAOS was to avoid the use of critical methods, and our ELINT implementation does

not use any. The CAOS initialization routines, however, do use such methods.

7Cun’ently. agents may be created only "at” or "near” specified CARE sites. CAOS makes no attempt at dynamic

load balancing.
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site. A dynamically created agent may not be referenced symbolically, however, its

remote-address may be exchanged freely.

3.2.3. Communications Between Agents

Agents communicate with each other by exchanging messages. CAOS does not guarantee when
messages reach their destinations. Due to excessive message traffic or processing element
failure, messages may be delayed indefinitely during routing. It is the responsibility of the

application program to detect and recover from such delayed messages.

Two classes of messages are defined: those which return values, called value-desired messages,
and those which do not, called side-effect messages. The value-desired messages are made to
return their values to a special cell called a future which represents a "promise” for an
eventual value.® Processes attempting to access the value of a future are blocked until that
future has had its value set. Futures are first-class data types, and they may be manipulated by
non-strict Lisp operators (e.g., list) even if they have not yet received a value. It is possible
for the value of a CAOS future to be set more than once, and it is possible for there to be

multiple processes awaiting a future’'s value to be set.

The CARE primitive post-packet, which sends a packet from one process to another, is

employed in CAOS to produce three basic kinds of message sending operations:

post: The post operator sends a side-effect message to an agent. The sending process supplies a
remote-address to the target agent (or its name in the case of a static agent), the message's
routing priority, and the message’s name and arguments. The sender continues executing while

the message is delivered to the target agent.

post-future: The post-future operator sends a value-desired message to the target agent. The
sending process supplies the same parameters as for post, and it is immediately returned a local
pointer to the future which will eventually receive a value from the target agent. As for post,
the sender continues executing while the message is being delivered and executed remotely. A
process may later check the state of the future with the future-satisfied? operator or access the
future’'s value with the value-future operator. This latter operator will block the process (i.e.,

suspend its execution and "swap it out”) if the future has not yet received a value. When the

8Fu&uru are also used in Multilisp [14]). The HEP Supercomputer [15] implemented a simple version of futures as

a process synchronization mechanism.
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future finally receives a value, the blocked process is rescheduled for resumed execution.

post-value: The post-value operator is similar to the post-future operator except that the
sending process is immediately blocked until the target agent has returned a value. This
operator is defined in terms of post-future and value-future, and it is provided for

programming convenience.

It is possible to detect delay of value-desired messages by attaching a timeout to the associated
future. The operators post-clocked-future and post-clocked-value are similar to their untimed
counterparts but allow the caller to specify a timeout-period and timeout-action to be
performed if the future is not set within the timeout-period. Typical timeout-actions include
setting the future's value to a default value or resending the original message using the repost

operator.

There also exist versions of the basic posting operators which allow the same message to be
sent to multiple agents simultaneously. These versions exploit the multicast facilities of CARE

(see Section 5).

Multipost sends a side-effect message to a list of agents while multipost-future and
multipost-value send value-desired messages to lists of agents. In the latter two cases, the
associated future is actually a list of futures, and the future is not considered satisfied until ail
the target agents have responded. The value of such a message is an association-list where each
entry in the list is composed of an agent's remote-address or name and the returned message
value from that agent. There exist clocked versions of these operators (called, naturally,
multipost-clocked-future and multipost-clocked-value) to aid in detecting delayed multicast

messages.

3.3. The Runtime Structure of CAOS

CAOS is structured around three principal levels: site, agent, and process. Two of these levels,
site and process, reflect the organization of CARE. The remaining agent level is an artifact of
CAOS. We describe here only briefly the runtime structure of CAOS. This structure is
described in greater detail in [13].

9Neithcr CAOS nor CARE currently support a "predicated multicast” mode wherein messages wouid be sent to all
agents satisfying a particular predicate. Messages can only be multicast to a fully-specified list of agents. Receiving

agents can, of course, apply arbitrary predicates to the message in order to determine their consequent action.
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The implementation of CAOS described in this report is written in Zetalisp [1] and the

primitive CARE operators using Zetalisp's object-oriented programming tool, Flavors[1].

Each CARE site contains a CAOS Site-Manager. A Site-Manager is realized as a Flavors
instance. Its instance variables store site-global information needed by all agents located on
the site. In addition, each Site-Manager includes CARE-level processes which perform the
functions of creating new agents on its site and translating static agent symbolic names into

agent addresses.

Each CAOQOS agent is also realized as a Flavors instance. A CAOS agent is a multiprocess
entity. Most of the processes are created in the course of problem-solving activity. These
processes are refered to as user processes. At runtime, however, there are always two special
processes associated with each CAOS agent -~ the agent input monitor process and the agent
scheduler process. The agent input monitor process watches the CARE stream by which the
agent is known to other agents. It handles request messages and responses from value-desired
messages from these agents. CAOS user processes are created in response to request messages
from other agents or clocked methods. The agent scheduler process collaborates with the

CARE site’s operator processor in the scheduling of these user processes (see Section 5).

4. ELINT's Implementation in CAOS

We describe now the agent types and their organization for the ELINT application as
implemented in the CAOS framework. This implementation illustrates some of the benefits
and some of the drawbacks of the framework. As discussed in Section 2, ELINT is an expert
system whose domain is the interpretation of passively-observed radar emissions. ELINT is
meant to operate in real time. Emitters appear and disappear during the lifetime of an ELINT
run. The primary flow of information in ELINT as implemented in CAOQS is through a
pipeline with replicated stages. Each stage in the pipeline i<'s an agent. The basic ELINT agent
pipeline is illustrated in Figure 4-1

Observation > Observation
—“ Reader Handler » Emitter P Cluster s

Figure 4-1: The basic ELINT agent processing pipeline.
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4.1. ELINT Agent Types
The ELINT agent types described here are those used by the CT control strategy version of
ELINT in CAOS (see Section 6),

Observation-Reader Agent

Observation-reader agents are an artifact of the simulated environment in which our ELINT
implementation runs.  Their purpose is to feed radar observations into the system.
Observation-readers are driven off system clocks. At each clock "tick” (one ELINT time unit),
they supply all observations for the associated time interval to the proper observation-handler

agents. This behavior is similar to that of radar collection sites in an actual ELINT setting.
Observation-Handler Agent

The observation-handler agents accept radar observations from associated radar collection sites.
Of course, in the simulated environment the observations actually come from
observation-reader agents. There may be several observation-handlers associated with each
collection site. The collection site chooses to which of its observation-handlers to pass an

observation based on some scheduling criteria, for example, round-robin.

The contents of an ELINT observation was described in Section 2. In particular, each
observation contains an identifier number assigned by the collection site to distinguish the
source of the observation from other known sources. This source identifier is usually, but not
always, correct When an observation-handler receives an observation, it checks the
observation's identifier to see if it already knows about the emitter which is the observation's
source. If it does, it passes the observation to the appropriate emitter agent which represents
the observation's source. If the observation-handler does not know about the emitter, it asks
an emitter-manager agent to create a new emitter agent and then passes the observation to that

new agent.
Emitter-Manager Agent

There may be many emitter-manager agents in the system. An emitter-manager's task is to
respond to requests from observation-handlers to create new emitter agents with associated
source identifier numbers. If there is no such emitter agent in existence when the request is

received, the manager will create one and return its remote-address to the requesting




B-17

observation-handler agent. If there is such an emitter agent in existence when the request is
received, the manager will simply return its remote-address to the requestor. This situation
arises when one observation-handler requests an emitter that another observation-handler had
previously requested. Emitter-managers must also handle the case of "almost concurrent”
requests for the same emitter. This case occurs when a request is received for an emitter agent
which is currently being created by another process on another CARE site in response to a

slightly earlier request.

The reason for the emitter-manager's existence is to reduce the amount of inter-pipeline
dependency with respect to the creation of emitters. When ELINT creates an emitter it is
similar to a typical expert system drawing a conclusion based on some evidence. ELINT must
create its emitters in such a way that the individual observation-handlers do not each end up
creating copies of the "same" emitter, that is, creating multiple emitter agents with the same
associated source identifier (see Section 3.1.2). Consider the following strategies that the
observation-handler agents could use to create new emitter agents:
1. The handlers could create the emitter agents themselves immediately as needed.
Since the collection sites may pass observations with the same source identifier to
any observation-handler, it is possible for multiple observation-handlers to each

create its own copy of the same emitter. This strategy is not acceptable.

2. The handlers could create the emitter agents themselves, but inform the other
handlers that they have done this. This scheme breaks down when two handlers try

simultaneously (or almost simultaneously) to create the same emitter.

3. The handlers could rely on a single emitter-manager agent to create all emitters.
While this approach is safe from a consistency standpoint, it is likely to be

impractical as the single emitter-manager could become a processing bottieneck

4. The handlers could send requests to one of many emitter-managers chosen by some
arbitrary method. This idea is nearly correct, but does not rule out the possibility

of two emitter-managers each receiving creation requests for the same emitter.

5. The handlers could send requests to one of many emitter-managers chosen through

some algorithm which is invariant with respect to the source ideutifiers.
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This last strategy is the one used used in our implementation of ELINT. The algorithm for
choosing which emitter-manager to use is based on a many-to-one mapping of source

identifiers to emitter-managers.'®

Emitter Agent

Emitter agents hold the state and history of the observation sources they represent. As each
new observation is received by an emitter agent, it is added to a list of new observations. On
a periodic basis, this list of new observations is scanned for interesting information. In
particular, after enough observations are received, the emitter may be able to determine the
heading, speed, and location of the source it represents. The first time it is able to determine
this information, it asks a cluster-manager agent to either match the emitter to an existing
cluster agent (as described in section 2.3) or create a new cluster agent to hold the single
emitter. Subsequently, it sends an update message to the cluster agent to which it is associated

indicating its current heading, speed, and location.

Emitters maintain a qualitative confidence level of their own existence (possible, probable,
positive and was-positive). If new observations are received often enough, the emitter will
increase its confidence level until it reaches positive. If an observation is not received by an
emitter in the expected time interval, the emitter lowers its confidence by one step. If the
confidence falls below possible, the emitter deletes itself, informing its manager and any

cluster to which it is associated of its deletion.
Cluster-Manager Agent

The cluster-manager agents play much the same role in the creation of cluster agents as the
emitter-manager agents play in the creation of emitter agents. However, it is not possible to
compute an invariant to be used for a many-to-one mapping between emitters and cluster
managers. If ELINT were to employ multiple cluster-managers, any strategy for which of the
many managers an emitter agent chooses to request a cluster match could still result in the
creation of multiple instances of the “same" cluster (i.e., multiple cluster agents representing
the same physical cluster of emitters). Thus, we have chosen to implement ELINT using only

a single cluster-manager. Fortunately, new cluster creation is a relatively rare event, and the

10The algorithm simply computes the source identifier modulo the number of emitter-managers and maps that

number to a particular manager.
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single cluster-manager has never been observed to be a processing bottleneck.

As described above, requests from emitters to associate themselves with clusters are specified as

match requests over the extant clusters. Emitters are matched to clusters on the basis of their
location, speed, and heading histories. However, the cluster-manager does not itself perform
this matching operation. Although it knows about the existence of each cluster it has created,
it does not know about the current state of those clusters. Thus, the cluster-manager asks all

of its clusters to (concurrently) perform a match.

If none of the clusters responds with a positive match, the cluster-manager creates a new
cluster for the emitter. [f one cluster responds positively, the emitter is added to the cluster
and it is so informed of this fact. If more than one cluster responds positively, this usually
indicates that there is not yet sufficient resolution of the emitter’s history to uniquely associate
it with a cluster. In this case the emitter to cluster matching operation is tried again after

more observations of the emitter have been processed.
Cluster Agent

The radar emissions from a cluster of emitters often indicate the activities of the aircraft
represented by that cluster. For example, emissions from a missile guidance radar indicate that
an air-to-air attack is imminent. Each cluster agent periodically applies heuristics about types
of radar signals to try to determine the current activities of its represented aircraft, and, in
particular, if these activities represent a threat to friendly aircraft. This activity information,
the aircraft type information, and the merged track parameters of the emitters associated with
each cluster are the primary outputs of the ELINT system. Also, each cluster periodically

checks to see if all constituent emitters have been deleted. If so, it deletes itself.
Time-Manager Agent

Many of the knowledge-based actions taken by an ELINT agent make use of the agent's
last-observed time, that is, the time stamp of the most recent observation associated directly or
indirectly with the agent. For example, if an emitter agent determines that it has received no
new associated observations for several data time intervals (i.e., that it is "out-of -date"), it will
consider itself as no longer exisiting and it will delete itself and all of its relational links from
ELINT's situation board.!!

nThis action reflects the expectation knowledge that if an emitter within the area of observation is observed at time

t, then it is expected that it will be observed at time t+l.

_
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In an asynchronous message passing system such as CARE, it is difficult for an agent to
determine whether it is out-of-date because it has not been observed recently or because
messages to it which would result in an update of its last-observed time are delayed due to
overall system load or local load imbalances. One solution to this problem would be for each

observation-handler agent to send an "end-of-observation-time-interval” message to each of its

known emitter agents whenever it observes the crossing of an observation time interval
boundary.1?

This solution was rejectzd for the reported implementation of ELINT because of a perceived
excessive message overhead.!? Instead, our ELINT experiment uses a time-manager agent.
Whenever an observation-handler agent observes a new input observation time stamp, it reports
this new time to the time-manager via a message. The time-manager maintains a conservative,
global current observation time which is the minimum of the the reported time stamps.
Whenever any agent considers taking a drastic, non-reversible action which is based on its
being out-of-date (e.g., deleting itself), it requests a confirmation from the time-manager that
its (the requesting agent's) last-observed time is sufficiently older than the time-manager’s
global current observation time. The requesting agent does not perform its considered action
until it receives the confirmation. If in the interim, the requesting agent receives any messages

which resuit in an update of its last-observed time, the confirmation is ignored.
Reporter Agent

Instances of the reporter agent class are used to asynchronously output various ELINT reports
to displays and/or files, for example, threat reports and periodic situation board reports. In
addition, instances of a specialization of the reporter class, debug-trace-reporter, are used
during application program debugging to asynchronously output debugging traces in a manner

that minimally impacts system timing dependencies.

leince each input observation stream is in observation-time sequential order, each observation-handier eventually

knows when such a time boundary is crossed.

13This overhead may be more perceived than actual. A more recent implementation of ELINT uses such

"end-of -observation-time-~interval” messages. Initial results seem to indicate that the associated cost is not excessive

(see [16]).
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4.2. ELINT Agent Organization

The ELINT agents are basically organized as a pipeline with replicated stages where each stage
is an agent. Inter-pipeline dependencies and dependencies between replicated stages are
managed by emitter~manager and cluster-manager agents. The amount of replication (i.e., the
number of agents) at each pipeline stage is a function of that stage. For some stages, the
number of replicated agents at that stage is fixed during system initialization. For example,
the numbers of observation-handler agents, emitter-manager agents, and cluster-manager agents
are pre-determined based on the number of collection sites and their output data rates. The
numbers of emitter stages and cluster stages vary during the course of execution since the
corresponding emitter agents and cluster agents are created and deleted as the radar emitters

and collections of radar emitters which they represent appear and disappear over time.

The overall organization of the ELINT agents is illustrated in Figure 4-2

Coaltection Cluster

Reporter ‘ P Manager
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Time Threat Situation
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Figure 4-2: The overall ELINT agent communication organization.

5. An Overview of CARE

The CARE architectural specification and its simulation environment provide a parameterized
and instrumented multiprocessor simulation testbed designed to aid research in alternative
parallel architectures. The testbed executes within SIMPLE, a hierarchical, event-driven

simulator [3].

A CARE architecture is a grid of tens to hundreds of processing sites interconnected via a
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dedicated communications network. The network uses dynamic, buffered, cut-through routing,
and it supports multicast inter-site message transmission. The ELINT experiment, for example,
was performed on various square CARE grids of hexagonally connected sites, that is, each site,

excluding those at the edges of the grid, is connected to six of its eight nearest neighbors.

As shown in Figure 5-1, each CARE site consists of an evaluator, a general-purpose
processor-memory pair; an operator, a dedicated communications and process scheduling
processor which shares memory with the evaluator; and network interfaces ~- net-inputs and
net-outputs -- that accomplish pipelined message transmission, flow control, deadlock
avoidance, and routing. Each net-input at a site may establish a connection with a net-output

at any site, and all such connections at a site may be simultaneously active.
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Figure S-1: A hexagonally connected CARE grid.

Application-level computations take place in the evaluator. The operator performs two duties.
As a communications processor, it is responsible for initiating and receiving messages. As a
scheduling processor, it queues application-level proéesses for execution in the evaluator.

Message routing is performed by the net-input and net-output network interfaces.

In our simulation of CARE, the evaluator is treated as a "black box" Lisp processor. None of
its internal operation is simulated. The Lisp machine hosting the simulation serves as the
evaluator in each processing site. The operator, however, is functionally simulated, and the

network interfaces are simulated and instrumented in great detail.
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CARE allows a number of parameters of the processor grid to be adjusted. Among these
parameters are: the speed of the evaluator, the speed of the communications network, the
network routing algorithm, and the speeds of the process creating and switching mechanisms.
By altering these parameters, a single processor grid specification can be made to simulate a
wide variety of actual multiprocessor architectures. For example, we can experiment with the
optimal level-of-granularity of problem decomposition by varying the speed of both
process-switching and communications. Alternative network topologies can be studied by using
SIMPLE's graphic interfaces and composition operators to configure CARE components into

any topology that can be wired.

The CARE simulation environment provides detailed displays of such information as evaluator,
operator, and communication network utilization, and process scheduling latencies. This
instrumentation package informs developers of CARE applications of how efficiently their

systems make use of the simulated hardware.

A more detailed description of CARE is given in [16], and the technology considerations

underlying the CARE architecture are discussed in Appendix L.

6. Results and Conclusions

The CARE architectural simulation testbed and the CAOS system we have described have been
fully implemented, and they are in use by several groups within our Architectures Project.
CAOS-CARE executes on the Symbolics 3600 family of machines as well as on the Texas
Instruments Explorer Lisp machine. ELINT, as described in Sections 2 and 4, has also been

fully implemented, and we have analyzed its performance on various size CARE grids.

6.1. Evaluating CAOS
CAOS is a rather special-purpose environment, and it should be evaluated with respect to the
programming of concurrent, real-time signal interpretation systems. In this section, we explore

CAOS's suitability along the dimensions of expressiveness, efficiency, and scalability.

6.1.1. Expressiveness

When we ask that a fanguage be suitably expressive, we ask that its primitives be a2 good match
to the concepts the programmer is trying to encode. The programmer should not need to
resort to low-level "hackery” to implement operations which ought to be part of the language.
We believe we have succeeding in meeting this goal for CAOS (although to date, only CAOS's

designers have written CAQOS applications). Programming in CAOS is essentiallv nrogrammine
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in Lisp using objects but with added features for declaring, initializing, and controiling

concurrent, real-time signal interpretation applications.

6.1.2. Efficiency

CAOS has a very complicated architecture. The lifetime of a message involves numerous
processing states and scheduler interventions. Much of this complexity derives from the desire
to support alternate scheduling policies within an agent. The cost of this complexity is
approximately one order of magnitude in processing latency. For the common settings of

simulation parameters, CARE messages are exchanged in about 2 to 3 milliseconds, while

CAOS messages require about 30 milliseconds. It is this cost which forces us to decompose
applications coarsely, since more fine-grained decompositions would inevitably require more

message traffic.

We conclude that CAOS does not make efficient use of the underlying CARE architecture.
This conclusion has lead to an evolution of both CAOS and CARE which is described briefly
in Section 6.3 and in detail in [16].

6.1.3. Scalability

A system which scales well is one whose performance increases commensurately with its size.
Scalability is a common metric by which multiprocessor hardware architectures are judged. For
example, does a 100-processor realization of a particular architecture perform ten times better
than a 10-processor realization of the same architecture? Does it perform only five times
better, only just as well, or does it perform even worse? In hardware systems, scalability is
typically limited by various forms of contention in memories, busses, etc. The 100-processor
system might be no faster than the 10-processor system because all interprocessor
communications are routed through an element which is only fast enough to support ten

Processors.

We ask the same question of a CAOS application. Does the throughput of ELINT, for
example, increase as we make more processors available to it? This question is critical for
CAOQS-based, real-time interpretation systems. Our only means of coping with arbitrarily high

data rates is by increasing the number of processors.

We believe CAOS scales well with respect to the number of available processors. The potential
limiting factors to its scaling are increased software contention, such as the inter-pipeline
bottlenecks described in Section 3, and increased hardware contention, such as overloaded

processors and/or communication channels. Software contention can be minimized by the
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design of the application. Communications contention can be minimized by executing CAOS
on top of an appropriate hardware architecture such as that afforded by CARE. CAOS

applications tend to be ccarsely decomposed. They are bounded by computation, rather than

communication, and communications loading was not a problem in our ELINT-CAOS-CARE

experiment.

Unfortunately, processor loading remains an issue. A configuration with poor load balancing
in which some CARE sites are busy while others are idle does not scale well. Increased
throughput is limited by contention for processing resources on overloaded sites while resources
on unloaded sites go unused. The problem of automatic load balancing is not addressed by
CAOS as agents are simply assigned to processing sites on a round-robin basis with no attempt
to keep potentially busy agents apart. We currently have no solution to the problem of
processor load balancing beyond that of carefully “hand crafting” a site allocation strategy for

each application and then "tuning” that strategy via succesive refinement.

6.2. Evaluating ELINT Under CAOS

The input data set used for most of our ELINT-CAOS runs was based on a scenario involving
16 aircraft mounting a total of 88 radar emitters with between 4 and 45 emitters active and
observed during any one data time interval, The scenario takes place in a 60 by 80 mile area

over 36 time units, and it involves 1040 separate emitter observations.

Our experience with ELINT indicates that the primary determiner of throughput and solution
quality is the strategy used in making individual agents cooperate in producing the desired
interpretation. Of secondary importance is the degree to which processing load is evenly
balanced over the processor grid. We now discuss the impact of these factors on ELINT's

performance.

The following three "control” strategies were used in our experiment:

1. NC: This "no control” strategy represents [imited inter-agent control. Agents
initiate actions independently. Whenever an agent wants to perform an action, it
does so as soon as processing resources are available. For example, whenever an
observation-handler agent needs a new emitter agent, it simply creates it with no
attempt to coordinate this creation with other observation-handlers. As a result,
multiple, non-communicating copies of an emitter may be created, and each copy
receives a only portion of the input data it requires. The NC strategy was expected

to produce qualitatively poor results, and it was primarilly intended only as a
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baseline against which to compare more realistic control strategies. What was

surprising was that the strategy also produced quantitatively poor results (see below).

2. CC: In this strategy, agents cooperate in the creation of new agents via manager
agents as described in_ Section 4. The manager agents assure that only one copy of
an agent is created, irrespective of the number of simultaneous creation requests.
All requestors are returned a reference to the single new agent. Originally, we
believed the CC (for "creation control”) strategy would be sufficient for ELINT to
produce satisficing high-level interpretations. Our experiment results showed that

this was not always the case (see below).

3.CT: The CT ("creation and time control”) strategy was designed to additonally
manage the skewed views of real-world tinfe which develop in agent pipelines. For
example, this strategy prevents an emitter agent from deleting itself when it has not
received a new observation in a while even though some observation-handler agent
has sent the emitter an observation which it has yet to receive. The agents
corresponding to the CT strategy are those described in Section 4.
Table 6-1 illustrates the qualitative effects of the various control strategies and grid sizes. The
table presents the six major performance attributes by which the quality of an ELINT run is
measured. Since the input data for the ELINT experiment were generated from known

scenarios, it was possible to compare the results of an ELINT run with "ground truth.”

Table 6-1: ELINT Solution Quality Versus Control Strategies and Grid Sizes.

Qualitative Control strategy/grid size
performance
attribute

NC/16 CC/16 CC36 CT/4 CT/16 CT/36

False alarms 1% 0 0 0 0 0
Reincarnation 49% 42 2 0 0 0
Confidences 19% 20 90 89 93 95
Fixes 48% 42 99 100 100 100
Threats 65% 63 81 87 87 90
Fusion 0% 0 77 8s 88 89

The major qualitative performance attributes are:

False Alarms: This attribute is the percentage of emitter agents that ELINT should not have
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hypothesized as existing with respect to the total number of emitter agents hypothesized.

ELINT was not severely impacted by false alarms in any of the control configurations in
which it was run as the knowledge used for hypothesizing new emitters was quite conservative.
That is, the knowlege was such that it prefered missing a true, but low confidence, emitter to

creating a false alarm emitter.

Reincarnation: This attribute is the percentage of recreated emitter agents, that is, emitters
which had previously existed but had erroneously deleted themselves due to lack of recent
observations, with respect to the total number of emitters created. Large numbers of
reincarnated emitters indicate some portion of ELINT is unable to keep up with the data rate.
This can be caused by the data rate being too high globally so that all emitters are overloaded
or by the data rate being too h'*h locally due to poor load balancing so that some subset of

the emitters are overloaded.

The CT control strategy was designed to prevent reincarnations. Hence, none occurred when
CT was employed on any size grid. When the CC strategy was used, only the 36 site grid was
large enough for ELINT to sufficently keep up with the input data rate so that emitters were
not erroneously deleted due to overload.

Confidence Level: This attribute is the percentage of correctly deduced confidence levels for the
existence of an emitter with respect to the total number of times such confidence levels were

determined.

For each hypothesized emitter, ELINT maintains a dynamic confidence level for the existence
of the emitter based on accumulating evidence (see Section 4.1). The correct calculation of
confidence levels depends heavily on the system being able to cope with the incoming data
rate. One way to improve confidence levels was to use a large processor grid. The other was

to employ the CT control strategy.

Fixes: This attribute is the percentage of correctly-calculated positional fixes of emitters with
respect to the total number of times fixes could have been determined from the ground truth
data.

A fix can be computed whenever an emitter has seen at least two observations from different
collection sites in the same data time interval. If, for example, an emitter is undergoing
reincarnation, it will not accumulate enough data to regularly compute fixes. Thus, the

approaches which minimized reincarnation tended to maximize the correct calculation of fix
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information.

Threats: As described in Sections 2 and 4, certain emitter and cluster events represent

immediate threats. This attribute is the percentage of recognized threats with respect to the

total number of threat events based on the ground truth data.

Fusion: This attribute is the percentage of correct clustering of emitter agents to cluster agents.
The correct computation of fusion appeared to be related, in part, to the correct computation
of confidence levels. The rusion process is also the most knowledge-intensive computation in

ELINT, and our imperfect results indicate the extent to which ELINT's knowledge is

incomplete.

The overall goal of the control strategy experiments was to see if it was possible to determine
strategies where the quality of the output results were relatively insensitive to grid size and load

balance but still achived significant concurrency.

We interpret from Table 6-1 that the corntrol strategy has the greatest impact on the quality of
results. The CT strategy produced high-quality results irrespective of the number of processors
used. The CC strategy, which is much more sensitive to processing delays, performed nearly as
well only on the 36 si-. grid. We believe the added complexity of the CT strategy, while never
detrimental, is primarily beneficial when the interpretation system might be overloaded by high
data rates or poor load balancing.

Table 6-2 gives the simulated execution times for the ELINT runs used to derive the data in
Table 6-1, and Table 6-3 gives the total CAOS message counts for these runs.

Table 6-2: Simulated ELINT execution times for various control strategies
and grid sizes.

Grid size
Control
strategy
4 16 36
NC >11.19 sec.
CC 10.87 5.12
CT 11.80 8.10 417

Tables 6-2 and 6-3 clearly show that the processing cost of added control is far outweighed by
the benefits in its use. Far less message traffic is generated, and the overall simulated time is

reduced. Note that for the runs whose execution times are shown in Table 6-2, the input dat1

e ————————————————————————
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Table 6-3: CAOS message counts for ELINT executions with various control
strategies and grid sizes.

Grid size
Control
stratesy 4 16 36
NC >16118 msg.
CcC 7375 4823
CT 4516 4703 4616

rate was .1 seconds per ELINT time unit. Since the input data set used for these runs spanned
36 time units, the last observation was fed into the system at 3.6 (simulated) seconds. Hence,

this is the minimum possible simulated execution time for these runs.

Table 6-4 and Figure 6-1 show the quantitative effect of processor grid size when the CT
control strategy is employed. These results were produced with the input data rate set ten
times higher (.01 seconds per ELINT time unit) than that used to produce Table 6~2. The
minimum possible simulated execution time for the runs used to produce Table 6-4 is 0.36
seconds.

Table 6-4: Simulated ELINT execution time versus grid size for production
runs using CT control strategy.

Grid size Execution time
1 9.476 sec.
4 3.237
9 1.517
16 761
25 541
36 557

As shown in Figure 6-1, the speedu, achieved by increasing the processor grid size is nearly

linear in the 1 to 25 processor site range. However, the 36 site grid was slightly slower than
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Figure 6-1: The relative speedup of ELINT executions on various size CARE grids.

the 25 site grid.14

In this last case, there was not sufficient data per ELINT time interval to warrant the
additional processors. That is, there was not enough concurrency to exploit 36 processors.
This can be seen from Table 6-5 which gives timing results for larger data sets with more

emitters and observations during each time interval and, hence, more potential for concurrency.

Table 6-5: Simulated ELINT execution times and speedup for larger data sets.

Number of 1-site grid 36-site grid Speedup of

Observations execution time execution time 36overl
1040 9.476 sec. 557 sec. 17.0
2080 25.10 .948 265
4160 55.87 2.259 24.7

As shown in this table, for an input data set representing twice as many emitters and

1‘Because of the intrinsic non-determinism of a CARE architecture, we observed variations in the solution qualities
and the run times between different runs of the same input data set on the same size CARE grids. For such runs, the
variations in solution qualities never exceeded a fraction of a percent. However, the varitions in run times where as

much as five percent. This accounts for the slightly longer execution time on 36 versus 25 processors.




B-31

observations than the basic data set, the 36 site grid achived a speedup factor of 26.5 (as
opposed to a speedup of 17.0 for the basic data set) over a single processor. However, for a
data set four times larger than the basic data set, the speedup factor was only 24.8. This was
because this larger, and hence more concurrent, data set saturated the 36 site grid. That is, the

2080 observation data set already provided enough concurrency to fully exploit the 36 site grid.

6.3. Some Open Questions

CAQS has been a suitable framework in which to construct concurrent signal interpretation
systems, and we expect many of its concepts to be useful in our future computing architectures.
Of principal concern to us now is increasing the efficiency with which the underlying CARE
architecture is used. In addition, our experience suggests a number of questions to be explored
in future research:

« What is the appropriate level of granularity at which to decompose problems for
CARE-like architectures?

« What is the most efficient means to synchronize the actions of concurrent problem

solvers when necessary?

+ How can flexible scheduling policies be implemented without significant loss of
efficiency? What is the impact on problem solving if alternate scheduling policies

are not provided?

« Are there efficicnt mechanisms for dynamically balancing processor loads?

We have started to investigate these questions in the context of a new CARE environment.
One of the primary difference between the original environment and the new environment is
that the process is no longer the basic unit of computation. While the new CARE system still
supports the use of processes, it emphasizes the use of contexts which are computations with

less state than those of processes.

When a context is forced to suspend to await a value from a remote service, it is aborted, and
restarted from scratch later when the value is available. This behavior encourages more
fine-grained decomposition of problems written in a functional style where individual methods

are small and consist of a binding phase followed by an evaluation phase.

In addition, CARE now supports arbitrary prioritization of messages delivered to streams. As
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a result, it is no longer necessary to include in CAOS a complex and expensive scheduling
strategy. Early indications are that the new CARE environment with a slightly modified CAOS
environment performs around two orders of magnitude faster than the configuration described
in this paper. The evolution of CARE and CAOS based on the results of our ELINT-CAOS
-CARE experiment is described in greater detail in [16].
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I. Technology Considerations Underlying the CARE Architecture

The CARE simulation testbed can be used to simulate shared memory as well as message
passing multiprocessor architectures. For example, it has been configured to simulate a single
address space, shared global memory architecture where the processors (and their tocal cache
memories) are connected to the shared memory's controllers via a switching network. However,
the intended focus of the CARE testbed is on message passing, multiprocessor architectures
where each processor has significant local memory. This focus is based on technology

considerations -- primarily communication versus processing costs.

The base for development of general purpose multiprocessor systems, as for computer systems
generally, is given by the design constraints and opportunities established by evolving
semiconductor design and manufacturing processes. The VLSI design medium brings a new
perspective on cost -- switches are cheap whilg wires are expensive. Communication costs
dominate those associated with logic. Communication is currently the resource in shortest
supply, and it will become more of a constraint rather than less as semiconductor lithographies

decrease.

The consequence of relatively expensive communication is that performance is enhanced if the
design establishes that whenever a lot of information has to move in a short time, it does not
have to move far. Significant locality of high bandwidth links is a design goal. Among the
highest bandwidth links in a computer system are those connecting the processor and memory.

Thus, close coupling of processors with local memory is preferred.

To reduce demand on the communications resource to supportable levels, local memory sizes
for multiprocessors can be expected to increase to the 100K byte level and beyond, and block
transfers between backing store and such several hundred kilobyte local memories will be used
to make the most efficient use of both memory structures and communications facilities.
Moreover, the functionallity of memory controlers will expand to include, for example,
management of request queues, the dispatching of results, and execution of synchronization
primitives; and thus, the distinctions between a memory controller and a small, simple

processor will become blurred.

The proportion of area for a simple, high performance processor to the total area of a site
with, for example, 256K bytes of local storage can be reasonably estimated at around 15%.
From (i) this estimate of the incremental cost of adding a processor to a block of memory, (ii)

the significant size ~f the total local storage in the system, (iii) the blurring of distinctions
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between fast, simple processors and memory controllers of increasing complexity, and (iv) the
tendency towards block tranfers between local memory and backing store, it follows that the
level of the storage hierarchy now labeled as "random access memory” is likely to be subsumed
by a combination of large local memories and fast, block access backing stores in

multiprocessor systems.

The performance of the available communication resource merits special attention in the
design of multiprocessor systems. For example, dynamic routing which selects available
inter-site links as needed is useful in balancing load, and thus it allows more of the
communication resource of the system to be exploited throughout a computation. Cut-though
routing which makes a routing decision on the fly as a packet is received reduces buffer
requirements in the system and minimizes latency experienced in netv;rork transit. Flow control
via signalling transmission delays back to the source based on local blockage information
together with single "word" buffering and transmission validation at each network input and
output port allows the source to complete a transmission in a time that does not depend on the
size of the network. Point to point multicast which sends (approximately) the same packet to
multiple targets using common resources to the largest degree possible can significantly enhance
overall communication performance. A communication resource with these features provides a
multiprocessor system with “virtual busses” that are established precisely as and when they are

needed.

These technology considerations have led us to focus our attention on the class of

multiprocessor hardware system architectures exemplified by CARE.
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Abstract

CAGE provides a framework for building and executing application programs as concurrent

blackboard systems. The user controls which constructs of the blackboard system are
executed in parallel.




1. Introduction

CAGE!, Concurrent AGE?, provides a framework for building and executing appiication
programs as a concurrent blackboard system. With CAGE, the user can control which parts of
the blackboard system are executed in parallel. A blackboard application an be implemented
and debugged serially on CAGE. Once the serial version is debugged, voncurrency can be
introduced to different parts of the system, allowing the user to experiment with various
configurations. We believe this incremental approach will facilitate the construction of
concurrent problem solving systems and will teach us much about programming in a parallel
environment. This paper describes the design of the CAGE system and gives detailed
instructions for implementing an application, using the CAGE language and compiler [Rice
86]. We have included advice, warnings, and caveats based on our experience using CAGE.

The target parallel system architecture for the CAGE system is currently the same as that of
QLAMBDA, a queue-based multi-processing Lisp ( [Gabriel 84]Jand McCarthy) on which the
parallel simulation is based. We are assuming a shared memory and a large number of
processors. The user can specify his CAGE application in an extension of the L100 language,
called the CAGE language, and use the CAGE compiler to generate CAGE code. CAGE runs
on LOQS, a functional simulator for QLAMBDA. CAGE is implemented in ZETALISP for
Symbolics 3600 machines and TI Explorers.

2. Overview of CAGE Design

CAGE is a blackboard framework system. -In addition to the basic AGE [Nii 79]
functionality, CAGE allows user-directed control over the concurrent execution of many of its
contructs. The basic components of a system built using CAGE are:

1. A global data base (the blackboard) in which emerging solutions are posted. The
elements on the blackboard are organized into levels and represented as & set of
attribute-value pairs (a frame).

2. Globally accessible lists on which control information is posted (e.g. lists of events,
expectations, etc.).

3. An indefinite number of knowledge sources, each consisting of an indefinite
number of production rules.

4, Various kinds of control information that determine (a) which blackboard element
is to be the focus of attention and (b) which knowledge source is to be used at any
given point in the problem solving process.

5. Declarations that specify what components (knowledge sources, rules, condition and
action parts of rules) are to be executed in parallel, and when to force
synchronization. During the execution of the user's application CAGE will run
these specified components in parallel.

Using the concurrency control specifications, the user can alter the simple, serial control loop
of CAGE by introducing concurrent actions. CAGE allows parallelism ranging from
concurrently executing knowledge sources all the way down to concurrent actions on the
right- or left-hand-sides of the rules. The serial execution and parallel executions possible in
CAGE are summarized below.

in KS Control
serial: pick one event and execute associated KSs

lThis research is supporied by DARPA/RADC under contract number F30602-85-C-0012, by NASA under contract
number NCC 2-220, and by Boeing Computer Services under contract number W-266875.

2CAGF. is based on the AGFE System and we have assumed here thal the reader is familiar with the AGF system.
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parallel:
1. as each event is generated execute associated
KSs in parallel?
2. wait until several events are generated then
select a subset and execute relevant KSs for
all subset events in parallel

in KS
serial:1. evaluate bindings
2. evaluate LHS then execute RHS of one rule
whose LHS matches (in written order)
3. evaluate all LHS then execute all RHS
whose LHSs match

parallel:
1. evaluate bindings*
2. evaluate all LHSs in parallel
a. then synchronize (i.e. wait for all
LHS evaluations to complete)
and choose one RHS(pick one in order)
b. then synchronize and execute the
RHSs serially (in written order)
c. execute RHS as LHS matches*

in Rule
serial:evaluate each clause then execute each action

parallel:
evaluate clauses in parallel then execute actions
in parallel*
(first nil clause --> no match; first ail non-NIL
clauses --> maitch)

in clause
serial: Lisp code

parallel: Qlambda code

For more information about the concurrent options available in the CAGE System and how
to specify them refer to Section 1V of this paper.

3. Building applications in CAGE

In each of the following sections we will outline the application data that must be supplied
by the user and how that information should be structured for use by the CAGE System. The
CAGE System provides a CAGE language with which the user can write his application. The
type of user-supplied information is similar to that required for applications constructed in the
original AGE system. However, the structure of the user information is somewhat different
from that of an AGE application.

3Thc starred options indicale the greatest use of concurrency.

———————————
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3.1. Blackboard Data Structure ]
There are two major components in the CAGE blackboard structure, the hypothesis classes

(frequently called levels in hierarchical blackboard structures) and the hypothesis nodes. The
user must specify the classes that make up his application's blackboard structure. For each
class, the user must define the fields to be associated with the nodes created in that class.
Nodes are created in those classes, either a priori by the user or dynamically while executing
the user's rules. The following example shows the definition of several classes and their fields

in the CAGE language.

Class Definitions for Model "example"

Class name-of-levela :
attributel
attribute?
attribute3

Cliass name-of-levelb
attributed
attributeb

This.will compile into two macro calls, DEFHYPOTHESIS-STRUCTURE and DEFLEVEL,
which the CAGE System will in turn compile into the appropriate hypothesis structure.

(defhypothesis-structure
user-hypothesis-structure
(application-system-root)
name-of-levela
name-of-levelb
name-of-levelc

(deflevel name-of-levela
((attributel nil)
(attribute2 nil)
(attributeld ni;;

Each of the levels(or classes) will be defined as an object with the attributes as instance
variables and with the nodes as instances of those objects as they are created. (The user can
define methods for the l!evel objects which are generally used for printing information
contained in the nodes on those levels.)

Definitions:

user-hypothesis-structure: A name the user gives the application's blackboard
structure.

application-system-root: A handle on the above hypothesis structure for user
access, generally a node where the input data, or a massaged version of the input
data will reside, or the top level of a hierarchical hypothesis structure.

name-of-level: Each level or class must have a user supplied name.

node: An instance of a level, created either before or during the execution of the
application, inheriting all the attributes of that level, but no values.

attribute: For each level the user must specify the names of the slots, which will
become a template for the instance nodes, which in turn will contain the values used
by the KSs. These values are initially NIL.

link: The user may also define links for connecting nodes. These links are defined
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in the knowledge sources which use them and consist of a link name and an
optional, opposite link. The value of a link on a node is the name of another node.

value: The value of an attribute depends on what was stored there by the rules
and its structure depends on how it was stored. Values can be modified only by the
user's initialization function and by the application rules. The structure of the
values is arbitrary. How values are added or changed is explained in the knowledge

source section.

3.2. Control Structure
All CAGE control information is referenced through the Control-Structure object. The

major components of the Control-Structure are;

User-Initialization: This is a user-defined function, handling any initialization
needed for the user's program, e.g. setting-up the appropriate blackboard structure
(on top of the predefined hypothesis framework) from the input data.

Termination-Condition: Another user-defined function, which determines when the
application should be terminated. The Termination-Condition can access the step-
lists for events or expectations, perhaps checking for a significant event; or the
blackboard, checking a particular node or nodes. It should return a non-nil value
when the application is to be terminated.

User-Post-Processor: When the termination condition is true, a user supplied post
processing function is invoked. This function can be used to print out the
application’s results in a readable form, or to handle any other post processing
details.

Event-Info: This is a pointer to the Event-Information object which contains
both the user-specified information on how events should be scheduled, and run-
time data including the event list and the current focus event.

Expect-Info: Similar to the Event-Info pointer, this object keeps track of the
expectations generated by the application and information specifying how those
expectation should be scheduled.

Control-Rules: A list of of control rules defined by the user to determine when to
execute which control step (event or expectation). The control rules are defined
using the DEFCONTROL-RULE macro. Each control rule consists of a condition,
an arbitrary LISP expression and a steptype, either event or expect. The following
example of a control rule says that if there are any events pending on the event list
(steplist of event-info is not null), then do an event next.

Example:

Control Rule : Crule-1
Condition Part:
If : event-info®steplist
Action part : event

LHS-Evaluator: The default function for evaluating the conditions of a rule if the
knowledge source containing that rule has no left hand side evaluator over-riding
this default. For most applications the CAGE provided function QAND will suffice.
It is a serial or concurrent boolean AND depending on the parallel options selected
by the user.

3.2.1. Event-Information
A blackboard system can be executed in several ways, the simplest being event-driven. This
means that each time a rule action is executed the system records that change to the blackboard
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as an event. Each event is added to a list called the event list. The scheduler selects an event
from the event list to become the next focus event. The type of focus event is matched
against the preconditions of the knowledge sources, and all the matching knowledge sources are
activated. The rules of the activated knowledge sources are evaluated, those rules with satisfied

conditions are executed and the cycle repeats until the termination is true.
To run a blackboard model with an event-driven control structure, certain control
information must be supplied by the user.
selection-method: a function that determines which event to select from the event
list. The user can write his own best-first selection method or use one of the
CAGE provided functions, FIFO, LIFO, or AGENDA. I[f the AGENDA selection
method is chosen, the user must also specify the agenda and an order.

agenda: An ordered list of event types supplied by the user. (See knowledge source
specification for definition of event type.)

order: LIFO or FIFO order in which to check the agenda. There may be several
different events of the same type on the event list.

collection rules: In some applications many events of the same type and the same
node are generated and added to the event list. If the user specifies that type of
event as a collection rule, then only one event is pursued and the others are
collected and deleted from the event list.

3.2.2. Expect-Information
In an expectation-driven system, a rule may specify an expected result or change on the

blackboard as one of the actions of that rule (called an expectation rule). When an
expectation rule is executed, the expectation part of the rule is added to the expectation list.
Later, when the control rules specify that an “"expect" step should be executed, a focus is
selected from the expectation list. If a change has occurred on the blackboard that satisfies the
expect portion, actions associated with the expectation rule are executed.

Much of the information required to execute an expectation-driven system is similar to that
of an event-driven system. The user must supply a selection-method, possibly including an
agenda and order, and collection rules. Some additional information is required to execute

expectation.

matcher: a function which defines how to match expectations to the blackboard.
CAGE provides on default, PASSIVEMATCH, which simply evaluates the expectation
portion of the expectation rule to see if its value is non-nil.

3.3. Knowledge Sources
CAGE knowledge sources are a partitioning of the application knowledge into sets of rules.
Each knowledge source consists of some declarative information and a set of rules.

3.3.1. Knowledge Source Declarations
The definition of a knowledge source consists of more than just groups of rules. In order to
properly interprets those rules, CAGE needs to know certain knowledge source control

information, eg.,

1. Under what circumstances should this knowledge source be invoked?

2. How should the rule conditions be evaluated,

3. what levels of the blackboard structure will be changed?

4. Which one or all of the rules whose conditions are true should be executed?
5. Are there any local variables or links to be defined for this KS?
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The following features are available for the user to tailor a knowledge source to his own
specifications:

Preconditions: A list of tokens, representing the event types used in rules. If the
focus event has an event type that matches one of the knowledge source's

preconditions, then that knowledge source is activated.

Levels: A list of pairs of blackboard levels or classes. The user must specify
between which levels of his hypothesis structure a knowledge source makes

inferences.

Links: If a knowledge source adds links between nodes on the blackboard, they
must be defined here. The definition consists of a list of pairs of link names, a
link and its inverse.

Hit Strategy: There are two main hit strategies available in CAGE, SINGLE and
MULTIPLE. When a knowledge source with a single hit strategy is interpreted the
rules of that KS are evaluated, in order, until one rule’s condition evaluated to true.
Then that rules actions are executed and no other rules are even considered. With a
multiple hit strategy, the conditions of all rules of a knowledge source are evaluated
and then all the actions of rules which successfully evaluated executed. In
conjunction with either single or muitiple hit strategies, the user can also specify
ONCEONLY. This will cause a rule to be marked when its conditions are
successfully evaluated. Its actions will be executed and it will never be evaluated
again during that run of the application.

Definitions: A list of local definitions, available to all the rules of a knowledge
source. The definitions are an efficiency feature to avoid the repeated calculation of
the same value by all the rules. The structure is similar to that of LET, a list of
pairs, a variable name and an expressions to be evaluated and assigned to the the
variable. If the value is NIL it can be omitted.

Rule Order: A list of rule names, representing the rules of the knowledge source.
This is the order in which the rules will be evaluated serially. Because the rules are
actually defined as methods of the knowledge source to which they belong, each
name should begin with a colon (:).

ILHS Fvaluator: The user can optionally specify a left hand side rule evaluation
function for each knowledge source. There is also a default LHS evaluator specified
for the entire application in the Control data. The evaluator specified here will
override the default evaluator for this specific knowledge source. The LHS evaluator
is a function which determines how the rule conditions are evaluated. CAGE
provides several built-in functions which the user can select, including AND, for a
simple boolean AND of the conditions and QAND for a concurrent boolean AND.

The following is an example of the definition of a knowledge source from the CRYPTO
system written in the CAGE language.* The name of this knowledge source is "combine-
weights”, it has two preconditions, makes inferences from the Cryptoletter level of the
hypothesis structure to the alphabet-letter level, defines a pair of bi-directional links, and uses
the single-hit rule selection strategy. The combine-weights knowledge source also makes two
definitions, possible-values gets the value NIL and lhs-evaluator the value QAND.

4The colons in the CAGE language are separators when separated by spaces from other words in the language.
Colons indicate keywords when they directly precede a word.




Knowledge Source : combine-weights o
Preconditions : Confirmation, Contradiction

Classes : Cryptoletter : alphabet-letter
Links : Possible-Value-of : possible-Letters
Rule Selection : Single

Definitions
possible-values = nil
1hs-evaluator = gand

This compiles to the following CAGE macros.

(defknowledge-source COMBINE-WEIGHTS
:preconditions (confirmation contradiction)
:levels ((cryptoletter alphabet-letter))
:1inks((possible-value-of possible-letters))
:hit strategy (single)

:bindings ((possible-values))
:rule-order (:letters )
:1hs-evaluator gand)

3.3.2. Rules

CAGE rules consist of three major parts; definitions, conditions, and actions.

example from CRYPTO in CAGE.

Rule : letters {3}

Definitions
possible-values ==
possible-values(focus-node®
possible-letters)

Condition Part :
1f : gand(focus-node-is-cryptoletter,
possible-values)

Action Part :

Changes :
Change Type : Update
Updated Node : focus-node
Event Type : possible-assignment

Updated Slots :
possible-letters «« possible-values

;Combine the weights of identical possible
;values,

Here is an

CAGE also provides a macro for defining rules called DEFRULE, to which the above will

compile.
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(defrule (combine-weights :letters)

{((possible-values

(possible-values
($value focus-node :possible-letters
:all))))

((is-cryptoletter focus-node)

possible-values )

((propose :EVENT-TYPE 'possible-assignment
:CHANGE-TYPE ’'supersede
:HYPOTHESIS-ELEMENT focus-node
:LINK-NODE nil
:ATTRIBUTES-AND-VALUES

"((possible-letters
,possible-values))
:SUPPORT 'combine-weights)

))

After specifying the knowledge source to which a rule should be added and the name of the
rule, preceded by a colon, the user must specify the three major parts of the rule.

Definitions: The definition part of a rule is similar to a LET in structure. The
local variables set here are available only to this rule, both in the condition and
action parts, as well as other definitions of this rule. This is an optional component
of a rule, and can be NIL,

Conditions: The second part of a rule contains the conditions. These can be one
or more arbitrary LISP expressions which will be evaluated according to the left
hand side evaluator as specified in the local knowledge source or at the control level.
The conditions can reference both local variable definitions or variables bound at
the knowledge source level. The CAGE system provides several access functions for
retrieving values from the hypothesis structure, which can be used in the conditions
of rules. [t is important when writing the conditions of rules for a CAGE
application to keep in mind the feasibility of running those clauses concurrently, i.e.
keeping them independent of each other.

Actions: The action clauses make up the final part of a CAGE rule. These
clauses have a very specific structure as evidenced by the preceding examples. The
actions specify what changes are to be made to the hypothesis structure by a rule and
how those changes should be made. The user must specify what node and attributes
on the blackboard are to be changed, what the new links or values are, and how
those changes are to be made (possibly deleting some old values). The user must
also specify an event type, a name representing the type of change this action makes
to the blackboard. If and when the event created by this action is selected as a
focus event, this token will be matched against the preconditions of the knowledge
sources to determine which KS to invoke next.

3.4. Initialization

There are two types of initialization which can occur at the beginning of a CAGE run. First
CAGE must create the instances of all the application defined flavors which will constitute the
executable form of the user's system. In addition, the user can do any other initialization he
feels appropriate by defining his own initialization function, the name of which should be
stored in the application’s control structure. Since the major components of the application
are defined as flavors, initialization can be done by defining :inttialize or :after :init methods.

3.5. Input Data
The user must define two functions to handle his input data.




1. INPUT-PROCEDURE(Record, Time) : Given an input record, retrieved
automatically at the correct time by CAGE, do what ever should be done with that

input,e.g. add it to the blackboard.

2. TIME-OF-INPUT-RECORD(Record) : Given an input record, return the time
stamp.

At the beginning of each run the user will be asked to specify an input data file by typing in
the file name or selecting a file from a menu of pre-specified input data file names. The data
file consists of records that can be read by the above two functions. A time stamp is

mandatory on each input record.

4. Specifying Concurrency

CAGE supports the concurrent evaluation of pieces of knowledge. Once an application has
been debugged in serial mode, the user can specify one or several knowledge source components
to be executed in parallel. For example, the user might specify that the rules of the knowledge
source be evaluated concurrently, or perhaps just the actions of the rules or a combination of
the available options. With a minimum amount of recompilation, the user can change his
parallel specifications and experiment with many different configurations.

In general more speed-up should occur as more components are run in paratlel. But for
some applications the overhead of setting up the new processes and inter-process
communication costs will be greater than the speed-up gained by executing particular
components concurrently. For example, if most or all of the knowledge sources of an
application contain only one rule, then it would not be efficient to evaluate rules in parallel
since for any one KS invocation there would only be one item to evaluate.

4.1. Concurrent Components

The use of knowledge sources to partition the knowledge in blackboard systems and, in
particular, the structure of the knowledge sources in CAGE provide several obvious places for
concurrency. The knowledge sources group the domain knowledge into independent modules,
which theoretically, could be invoked independently and concurrently. Within each knowledge
source the rules provide another source of parallelism, and within each rule, the clauses of the
condition and action parts provide yet another. Of course not all clauses, rules or even
knowledge sources are actually implemented totally independently of each other and some
serialization may be necessary to correctly solve the application problem.

The following are the options for parallelism available in CAGE, grouped according to their
allowed use in combination.

Clause level: can be used in combination with each other or any other paraltel
option.

actions: Execute the RHS action clauses of a rule in parallel. Note:
When running RHS actions concurrently a non-deterministic system may
result if both destructive (Supersede in CAGE) and constructive (Modify)
actions occur to the same object in parallel. (Same object and attribute) A
QLOOP macro is used to initiate the parallelism for loop actions,
requiring recompilation of the rules containing loop actions.

lhs: Evaluate the LHS condition clauses of a rule in parallel. Note: Use
the rule bindings to set any locul variables tested here, insuring that the
lhs clauses will be independent. A QAND macro is provided as the LHS-
evaluator to initiate the concurrency for the conditions, requiring
recompilation when this option is used.

rule-bindings: Evaluate the definitions of a rule in parallel. Again, these
definitions should be independent of each other if their concurrent
evaluation is to result in an actual speed-up.
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Rule level: bindings can be used in combination with any of the other options, but
only one of the rule options, single, multiple, sync or nosync can be used at a time.

bindings: Concurrently evaluate the definitions at the beginning of a
knowledge source.

rules-single: Evaluate all of the conditions of the rules of a knowledge
source concurrently, but only execute the actions of one successfully

evaluated rule.

rules-multiple: Evaluate all of the conditions of the rules of a knowledge
source concurrently, then serially execute the actions of all the successfully
evaluated rules.

rﬁles-sync: Evaluate all of the conditions of the rules of a knowledge
source concurrently, then concurrently execute the actions of all applicable
rules.

rules-nosync: Begin evaluating the conditions of the rules of a knowledge
source in parallel and execute the actions of each rules as soon as the
conditions are known to be true. With this option there is no
synchronization between the left and right hand sides of rules.

Knowledge source level: Only one of the knowledge source options can be set at
any one time.

kss: Invoke all the applicable knowledge sources concurrently at step
selection, synchronizing by waiting for all knowledge sources to complete
execution and add events to the event list before concurrently invoking a
new set of kss.

kss-nosync: Invoke all applicable knowledge sources as soon as a new
event is created. This option provides the least control of all the options
available and does no synchronization. Many applications will have to be
changed slightly to execute reasonably under these conditions, particularly
removing any possible circular knowledge source invocations. To
implement the parallel execution of knowledge sources without "any
synchronization, the control loop of CAGE was drastically altered from
that described at the beginning of this paper. (See CAGE Overview.)
Without any synchronization, as soon as an event is created it immediately
allows all relevant knowledge sources to be invoked. No events are added
to the eventlist and no focus event is ever selected. A timed loop was
added to the top level control to re-invoke the user's initial knowledge
source in case the system exhausts all previous events before the
termination condition is satisfied.

kss-minisync: Add an event to the event list and do minimal
computation at the point of synchronization before invoking the next set
of knowledge sources. The main computation done is the collection and
pruning of similar events, leaving fewer events to activate subsequent KSs.
The mini-sync and no-sync options are different from the parallel kss
option in that they don’t use the serial step-selection procedure.

4.2. How to specify and change parallel components

A function, SELECT-PARALLEL-OPTIONS is provided to allow the user to quickly change
the selected parallel options. SELECT-PARALLEL-OPTIONS has no arguments. A menu of
parallel options will pop-up on the screen and the user can select new options or delete old
ones.




5. Design Details
CAGE is currently implemented in an object-oriented style, using the Flavors feature of
ZETALISP. The top level object in CAGE is called the BLACKBOARD. From the
Blackboard object there are pointers to each of the principle components of the system, as
follows
control-structure: all control information specified before compilation is stored
here, as well as pointers to run-time control structures.

hypothesis-structure: the blackboard solution space, which must be structured by
the user.

knowledge-source-list: names of the knowledge sources containing the production
rules of the user’s application.

user-functions: optional, user-defined functions invoked by the rules

information-structure: optional, user-defined, static data structures

A separate data structure, Parallel-Specifications, is used to store the parallel options selected
by the user.

The DEFKNOWLEDGESOURCE macros will create, at compile time, an object for each
knowledge source, and a set of associated methods. During the initialization process an
instance of each knowledge source object is created. Other instances may be created during
system execution if one of the concurrent knowledge source options is selected. One of the
associated methods, SETUP-AND-START, evaluates the knowledge source definitions and
initiates the rule interpretation when a knowledge source is invoked.

Each rule is created as three methods, EVALUATE-DEFINITIONS, EVALUATE-
CONDITION, and EVALUATE-ACTION, associated with the rule's name using the :case
method-combination feature of Flavors. The keywords of the action clause listed above are
keywords in the method definitions, and therefore must be preceded by colons in the macro
definition of a rule.

CAGE utilizes a global variable, PARALLEL-SPECIFICATIONS, whose value is a list of the
current parallel options specified by the user. It is initially NIL and is updated using
SELECT-PARALLEL-OPTIONS.

During execution CAGE prints out messages indicating the state of the execution and uses
some simple graphics to help the user observe the simulation of concurrency. A set of small
windows will appear on the right side of the screen, one for each process initiated by CAGE.
Any state messages generated by the parallel process will appear in one of these associated
windows, instead of the main terminal i/0 window. There is only room to display 12 of these
small i/0 windn~ws at the same time and still have them large enough and leave them up long
enough to be readable. If more than 12 processes are active at the same time, the windows will
overlap.

6. Future Directions

The next step for CAGE will be a reimplementation on CARE. The instrumentation in
CARE will provide us with the needed tools for measuring the speed-up gained from each of
the various concurrent options in the CAGE System. CAGE users will be able to implement
and debug their applications in the current CAGE-on-LOQS system with its fast simulation
time. Once an application is debugged it could then be run on the CAGE-CARE system for
complete and accurate measurements.




References

[Gabriel 84] Gabriel, Richard P. and McCarthy, John.
Queue-based Multi-processing Lisp.
Proceedings of the ACM Symposium on Lisp and Functional programming :25
- 44, August, 1984.

[Nii 79] Nii, H. P. and N. Aiello.
AGE: A Knowledge-based Program for Building Knowledge-based Programs.
Proc. of [JCAI 6 :645 - 655, 1979.

[Rice 86] Rice, J. P.
The L1000 Language and Compiler Manual.
Technical Report KSL-86-21, Heuristic Programming Project, C. S. Dept.,
Stanford University, 1986.




Appendix D

Multi-System Report Integration Using Blackboards

by
J. R. Delaney

Knowledge Systems Laboratory
Computer Science Department
Stanford University
Stanford, California 94305




SR SIS

Table of Contents

INTRODUCTION
NATURE OF 3LACKBOARDS
BLACKBOAKDS ILLUSTRATED

. SUITABILITY OF BLACKBOARDS

WORK IN PROGRESS
REFERENCES

Appendix D
1

2
3
7
8
9




Figure 3-1:

D-11

List of Figures
A Blackboard with 7 levels of nodes in 4 hierarchies




ACKNOWLEDGEMENT

This work was supported by the Defense Advanced Research Projects Agency, the NASA-
Ames Research Center, Boeing Computer Services, and the National Institutes of Health.

ABSTRACT

Blackboards are an Al problem solving methodology. A biackboard system consists of a
structured data base (the blackboard) holding input and derived inferences and a collection of
procedures for deriving inferences (knowledge sources). Each knowledge source is specialized to
operate on some portion of the blackboard. The knowledge sources are invoked
opportunistically as the information on the biackboard increases.

" e best known applications of the blackboard methodology have been in speech
understanding and passive sonar data interpretation. The inputs in these cases were a single
form of raw sensor data. But the methodology is also well suited to integrating multiple
streams of fully reduced and qualitatively different data such as active radar track reports,
passive electronic intelligence reports, and human intelligence reports about enemy intentions.

This paper sketches the nature of the blackboard problem solving methodology with an
emphasis on those features suiting it to such applications. The sketch is illustrated with
examples from a relatively simple multi-system report integration problem. Relevant
applications currently under development at Stanford’s Knowledge Systems Laboratory are also

described.

1. INTRODUCTION

"Multi-System Report Integration” is an odd phrase. An alternative would have been "Sensor
Data Fusion”. But that phrase often implies a less reduced form of i~formation to integrate
than is intended here. The reporting systems in this paper are presumed 0 reduce the data they
sense as fully as is practical with only that data available. The degree of processing can vary
from system to system. For a radar tracking system, the reports would be samples of on-going
tracks integrating all measurements up to the present. For an ELINT system dealing with
intermittent emissions, the reports might be just current emitter and bearing characteristics.
And for a human intelligence gathering system, the reports might be informed guesses about
near-term enemy tntentions.

"Sensor Data Fuston” also usually implies that the information to be integrated appears at
comparable time intervals or is static. But the reporting systems in this paper are presumed (0
provide reduced data over a wide range of time intervals. The radar, ELINT, and "humint”
systems mentioned above could produce reports at very different intervals with very different
degrees of regularity. Assuming that some reports are locally of comparable frequency while
others are locally static information is Procrustean.

“Blackboards” refers to a particular Al problem solving methodology. The best known
applications of the blackboard methodology are HEARSAY-II, a speech understanding system
(2), and the HASP/SIAP sonar data interpretation system (4,5). These applications effectively
processed regular streams of data from a single sensor, treating any other information as
focally static. But the blackboard methodology is more generally applicable. In particular, it
provides a convenient framework for integrating maximally reduced information from multiple
sources with different temporal characteristics. Just what 1s needed for multi-system report
integration.

In the first section below, the fundamental features of blackboard systems are described
abstractly. A consistent set of examples are used in the following section to clarify those
features in context of multi-system report integration. The next section reviews those aspects
of the blackboard methodology particularly suited to multi-system report integration. The last
section briefly describes work in progress at Stanford's Knowledge System Laboratory on two
more ambitious examples. It also explains how that work is embedded in a larger effort.
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2. NATURE OF BLACKBOARDS ‘
The blackboard problem solving methodology originated approximately 10 years ago and has
been evolving ever since. The hallmarks of a blackboard system are:

« A global data store holding input data and hypotheses about the solution of the
problem derived from that data. Related information is kept together. This data
store is known as the blackboard.

« A collection of procedures for deriving hypotheses about the solution of the
problem from the input data and/or from other hypotheses. Each procedute is
specialized to operate on a particular portion of the blackboard. These procedures

are known as knowledge sources.

A mechanism for invoking a knowledge source on relevant parts of the blackboard.
A knowledge source is invoked on a particular piece of the blackboard when the
invocation would incrementally advance the solution of the problem.  This
mechanism is known as the control structure.

Each of these hallmarks is described abstractly in the remainder of this section with simple
examples appearing in the next.

The blackboard holds the state of the problem solving system as the solution evolves. In
conventional terms, the dimensionality of the state varies with time. The elements may be
discretely or continuously valued. And the elements change values at discrete times. But such
observations miss the most significant feature of the blackboard. It structures the information
it holds.

Closely related input data or hypotheses are collected together in the form of blackboard
nodes having certain attributes and values for those attributes. Related nodes form blackboard
levels. All the nodes in a given level having the same attributes but (potentially) different
attribute values. Levels can in turn form hierarchies of anatysis or abstraction, usually with
input data nodes at the base of each hierarchy. The most common nodal attributes are links
between nodes on different levels. Such links connect hypotheses to input data or other
hypotheses which support them. They can be links up and down levels within a hierarchy or
they can be across hierarchies.

Knowledge sources transform the state of the problem solving system by adding nodes to the
blackboard, by removing them, or by modifying their attribute values. Knowledge sources are
effectively parametric procedures for transforming the state. A knowledge source could be
invoked on any node at a given level or a tuple of nodes at one or more levels. [t operates
only on the node(s) upon which it is invoked plus those nodes linked directly or indirectly to
them. Knowledge sources are also effectively typed procedures; a knowledge source can be
invoked only on a node of a particular level or on a tuple of nodes, each of a particular level.
This feature of knowledge sources provides them with a degree of modularity. In particular,
knowledge sources do not interact directly.

The procedure carried out by a knowledge source expresses knowledge of how to advance the
problem solution. It is expressed in the creation, modification, and/or elimination of particular
sorts of hypotheses in the form of nodes of particular levels. In this sense, a knowledge source
is a specialist in the solution of some part of the overall problem. The details of the
procedure can be expressed in any form. A typical form is a set of production rules and a
policy for using them.

Each production rule specifies a logical condition on the attribute values of the node(s) upon
which the knowledge source is invoked and an action to be carried out if that condition is
true. Both the condition and action can be compound. The value of a compound condition is
TRUE if the values of all its component conditions have TRUE values. A compound action is
simply a sequence of individual nodal creations, deletions, or modifications. Evaluating a
logical condition or modifying a node may require the application of complex numeric
functions to attribute values. In this way, production rules mix symbolic and numeric
computations,

Different policies for using a set of production rules allow at most one action to occur, of
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actions but never the same one twice, of the same one repealqdly. In the first case,
scanned in order of definition with the scan terminating immediately if a rule's
action is carried out. In the second case, the logical conditions of the rules are all tested
before any actions take place. Then any actions are carried out in parallel. The third case is
simply the second case repeated until no logical condition is TRUE. While this siyle of
programming many seem bizarre at first, it nas proved quite successful in past and existing

blackboard systems. .
A knowledge source describes the procedure by which it changes the blackboard when
invoked. It also describes when it is invocable. The most general form of this description is a
(possibly compound) logical condition on attribute values of the node(s) upon which it could
be invoked. In this manner, a knowledge source resembles a production rule, The condition is
parametric in the same sense that each knowledge source is parametric. As a result, the same
knowledge source may be invocable on several nodes or tuples of nodes simultaneously. Each
such combination of a knowledge source and 2 node or tuple of nodes is called a potential
invocation. Al any time, there are typically many potential invocations. The control structure
determines the set of potential invocations, picks one, and causes it to be carried out.

Many blackboard systems do not use the most general form to describe when a knowledge
source is invocable. They use events and logical combinations thereof. An event is a summary
of a blackboard change. A knowledge source posts the appropriate event or events when it
completes. A pointer to the affected node is associated with eich event. These systems may
also use eveants for an additional purpose as explained below.

The control structure is intended to operate in an opportunistic manner analogous to the
manner in which people solve jigsaw puzzles. Initially, the puzzle solver scans for pieces with
singular small-scale characteristics. If two such pieces have similar characteristics, they are
tested for fit. Gradually, clusters of pieces accrete as the puzzle solver continues (o scan
through the unused pieces. Once the clusters become sufficiently large, scanning the pieces is
replaced by searches for specific pieces to extend a cluster. But pieces plausibly belonging
another cluster are tested for fit there if they are chanced upon during a search, Eventually,
large clusters are recognized as connected on the basis of large scale characteristics and are
jointed. If progress while searching for specific pieces bogs down, the puzzle solver reverts to
scanning for pieces with similar characteristics for a time. [t choses that activity which, at the
moment, seems likely to make the best contribution to the overall solution of the problem.

A variety of techniques are used by the control structures of different blackboard systems to
decide which potential invocation would, if carried out, make the best contribution to the
overall solution. The topic is being actively researched. One system has an additional
blackboard for handling hypotheses about the best choice (3) and another allows all potential
invocations to be carried out in parallel (6).

Several blackboard systems usc events in their control structures. After a particular event or
sequence of events, particular knowledge sources are preferred to others. And they are prefered
for invocation on the affected node or nodes. These same systems also use events to describe
when a knowledge source is invocable. So the control structures of these systems need only
attend to events and not, to the blackboard nodes themselves.

Some of these blackboard systems also use expectations in their control structures.
Expectations are posted by knowledge sources just as events are posted. Generally speaking,
they are instructions to invoke a particular knowledge source on a particular node or nodes
when, if ever, a certain event or pattern of events occurs involving the node(s). Expectations
can also be negative. Such expectations cause a particular knowledge source to be invoked if a
certain event or pattern of events does not occur within a specified time interval.

multiple
the rules are

3. BLACKBOARDS ILLUSTRATED

Consider the problem of producing a situation map of aircraft flying over an area of
interest. The situation map is based on track reports from an air surveillance radar tracking
system, emitter/bearing reports from an ELINT system sensing airborne radar emissions, and
warnings from a2 h man intelligence system. The warnings are that particular aircraft or grouos
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oon enter the area of interest with particular objectives in mind. The situation
type of each aircrafg as well as its current position and velocity. The
regular for aircraft in the area of interest. The ELINT reports are
intermittent by comparison. There are no reports unless an emitter is on. And the detection
range of an active emitter can depend on its type and, in some cases, on the aircraft's aspect.

ts are also less accurate geometrically than radar reports. [ntelligence reports are

of aircraft may so
map should identify the
radar track reports are

f,‘;,','}‘f..,".‘l.f,’ frequent than the ELINT reports, but can be updated rapidly on occasion.
i
Al:ggt ) \ lmﬁéﬁfrm
N
s ' A
m‘&ftimr * ‘ mn&:&mr

Figure 3-1: A Blackboard with 7 levels of nodes in 4 hierarchies

Figure 3-1 illustrates a possible blackboard configuration during the course of solving this
problem. There are seven levels on the blackboard, a typical number. The situation map and
aircraft levels form one hierarchy of levels. Nodes on these two levels hierarchically express
a'ternative hypotheses about the map of aircraft in the area of interest. Two situation map
hypotheses exist in this case, both including the same (wo hypothetical aircraft and one
including a hypothetical third aircraft as shown by links between the corresponding nodes in
the figure. One attribute of a situation map node is thus a set of component aircraft nodes.
Hypothesis credibility is also a situation map node attribute. 4 posteriori probability would be
a reasonable credibility measure. The value of that attribute is a function of the credibilities
of the supporting aircraft hypotheses.

The intelligence report level is treated as a separate, degenerate hierarchy in the figure. The
figure shows (wo intelligence report nodes. Links indicate that one of these reports supports
both situation map hypotheses while the second report supports only one of them. The
credibility attribute value of each situation map node is also a function of the credibility of
each intelligence report node linked to it.

The radar track and radar report levels form another hierarchy. So do the ELINT track and

ELINT report levels. A sequence of report nodes is linked to a corresponding track node to
represent the hypothesis that they were all caused by the same object, aircraft or emitter.
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Similarly, the links between the aircraft nodes and both kinds of track nodes represent the
hypothesi's that the tracks are all of the same‘aircraft. The credibility of an aircraft hypothesis
1s a function of the credibilities of the two kinds of track hypotheses supporting it.

It will prove useful later to have explicit definitions of certain attributes of radar report and
radar track nodes. We do so in pseudo-computerese as follows:

Level: radar-report
Attributes: report-time
track-identifier
state-estimate
North position
East position
North velocity
East velocity
state-covariance

associated-tracks

Level: radar-track

Attributes: last-associated-report
report-history
track-credibility

The names of the attributes suggest their intended meanings. But attributes are given pragmatic
meaning by the way the attributes are manipulated by knowledge sources. They are analogous to
the elements of a state vector in this sense.

Knowledge sources embody knowledge about how to solve a problem. Consider the following
fragment of knowledge about radar tracking: :

A sequence of radar reports caused by a particular aircraft usually have the same
track identifier. An exception may occur if two aircraft approach closely at some
time, in which case the track identifiers are swapped at roughly the time of closest
approach.

[t can be converted into the following fragments of knowledge about collecting radar reports
into radar tracks:

Given a radar report node that is not associated with any radar track node and
given a radar (rack node, if the radar report node's track identifier is the same as
that of the radar track node's last associated radar report node, then associate them.

Given two radar track nodes, if their histories of associated radar report nodes
indicate a close approach, then create two new radar track nodes with histories
composed by splitting the original track nodes’ histories at the time of closest
approach and rejoining them with the track identifiers swapped after that time.

A knowledge source based on the first of these fragments is expressed in pseudo-computerese
as follows:
Applies-to:
a-radar-track , a-radar-report

Invocation-condition:
associated-tracks of a-radar-report =
empty-set

Use-policy:
all-true-once

Production-rule 1:
Condition:
track-identifier of last-associated-report
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of a-radar-track =
track-identifier of a-radar-report

Action: :
last-associated-report of a-radar-track

:= link to a-radar-report ;
report-history of a-radar-track

:z= link to a-radar-report ;
associated-tracks of a-track-report

:= link to a-radar-track

Here ™=" symbolizes assignment, "==" signifies addition to a set, and ™" sequences simple
actions in a compound one.

The knowledge source is quite simple, with just one production rule. That is atypical.
Knowledge sources using production rules typically employ between ten and thirty production

rules. A knowledge source realizing the second fragment would be more complex. it would
include one or more production rules used to determine whether a possible close approach
occurred and when.

The details of any particular control structure are complex. And the motivation for that
complexily is nc apparent in an example involving just one or two knowledge sources and a
few nodes. So no attempt is made to include control structure details in this illustration. A
sketch of the blackboard changes one would prefer under particular circumstances provides a
better feel for the control structure's gross behavior. It also illustrates how the different
components of a blackboard system can come together to solve a problem.

Assume that no reports have been received of any sort by the blackboard system. Then one
situation map node exists with no links to aircraft nodes. This represents the hypothesis that
no aircraft are in the area of interest. Then an intelligence report is posted on the blackboard.
[t warns that some number of aircraft of a particular type or types are expected to enter the
area during a specified time interval across a specified portion of the area's boundary. Aircraft
nodes are then created with the appropriate types, all linked to a new situation map node. The
credibility of this new situation map node is the same as that of the intelligence report. The
credibility of the old situation map node is appropriately adjusted downward.

The radar track attribute of each new aircraft node is not filled in at this point. There are
no radar track nodes yet. But an expectation is established that later examines newly created
radar track nodes. If one is created in the appropriate time interval and the appropriate place,
a link to that radar track becomes the value of the associated track attribute. If the
expectation goes unsatisfied, the aircraft node is deleted and the credibility of each associated
situation map is reduced. Whenever the credibility of a situation map node slips below a
certain level, that node is also deleted. Any aircraft nodes linked only to that situation map
node are also deleted. The credibilities of all remaining situation maps are then re-normalized.

Receipt of the first few radar track reports causes them to be posted on the blackboard, but
no more. Only when three report nodes having the same track identifier appear on the
blackboard is a radar track node created to represent the hypothesis that they are from a single
aircraft. In this manner, the creation of false radar track nodes based on radar false alarms is
largely avoided. The resulting node may then be linked to an existing aircraft node by the
aforementioned expectation.

Failing that, a new aircraft node is created to which the new radar track node is linked.
Then the cross-product is formed of the old situation map hypotheses and the pair of
hypotheses that the radar track was or was not caused by an aircraft. One new situation map
node is created corresponding to each existing one, The new situation map nodes are copies of
the old nodes, each with a link to this aircraft node added. Some portion of the credibility of
each ofd situation map hypothesis must also be transferred to the corresponding new
hypothesis. At this point, the knowledge source which removes insufficiently credible situation
map nodes is again applied to reduce the number of situation map hypotheses maintained.

The accretion of ELINT reports into ELINT tracks is similar to that of radar reports into
radar tracks. But the creation an of ELINT track does not satisfy any expectations or trigger
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the creation of an aircraft node. Rather it triggers a search for aircraft nodes of a type which
could produce the sensed emission and which has a history of estimated positions (implicit in
the radar tracks' report history) consistent with the ELINT track’s history of bearings (similarly
implicit). The ELINT track node is linked with any and all such aircraft nodes. The
credibility of any such aircraft nodes is increase_d. ap_proprlately to reflect evidence that the
hypothesis 1t represents is correct. Such a credibility increase must also be propagated up to
the situation map nodes. Creation of a new aircraft node triggers a similar search for
supporting ELINT tracks.

Prioritization among the knowledge sources carrying out the aforementioned actions can be
relatively simple. The arrival of a new input datum should trigger a locus of activity on the
blackboard which propagates up the network of levels, with pauses to spread down along
different hierarchies as appropriate. All of the activity directly triggered by one datum should
be completed before the next input datum s posted. To keep the amount of inter-input
processing reasonable, the diversity of hypotheses created in the normal course of processing
must be limited. Thus as additional radar reports arrive, the posted nodes are simply
associated with radar tracks on the basis of track identifiers as in the above knowledge source
example. It would be possible 1o create track nodes expressing all possible hypothetical
combination of track reports without regard to track identifiers. But the processing required to
create, qualify, and eventually delete most of these nodes would be wasteful given the number
of possible combinations.

But when should the control structure invoke the knowledge source which tests for a close
approach of two aircraft and creates new track nodes to reflect a possible confusion of track
identifiers? One answer would be after the completion of e..ry invocation of the knowledge
source associating a new radar report with an existing radar track. But that would mean
frequent invocations, usually producing no change. An alternative is to invoke that knowledge
source only when some other, less frequent, occurrence suggests the possibility of a close
approach by two aircraft and consequent track identifier confusion be considered.

In the scheme described above, ELINT tracks are associated with an aircraft if they are
consistent with the aircraft’'s hypothesized type and with the radar track. [If the tracks are
geometrically consistent but the nature of the tracked emission is inconsistent with the aircraft
type, one possibility is that the aircraft hypothesis was wrong with regard to type and should
be discarded or modified. But another possibility is that the radar track history actually
corresponds to two different aircraft at two different times due to a track identifier confusion
during a close approach. [f ELINT tracks are already linked with the aircraft node as support
for the hypotheses, the possibility of a close approach should be investigated first.

The above sketch does not reflect the only manner in which the example problem might be
solved. It reflects various options for incrementally advancing the problem solution. Choosing
which option to use in a particular situation can require subtlety if one wishes to be
computationally efficient. Not illustrated are the additional subtleties of advising the control
structure how to achieve that sequencing. Experience i1s requited to make such choices wisely,
Experience is also important in the construction of knowledge sources, the choice of
blackboard levels, and the selection of nodal attributes. Simple examples can only suggest the

subtleties involved.

4. SUITABILITY OF BLACKBOARDS

The above sketch of possible blackboard changes 1llustrates a major reason why the
biackboard problem solving methodology is suitable for multi-system report integration. The
ordering of changes adapts appropriately to the arrival of very different sorts of input data in
different orders.

If any intelligence report involving a particular aircraft arrives after radar track reports
corresponding to it, the hypothesis that it exists will still have been formed. The credibility of
the situation map hypotheses supported by that aircraft hypothesis will be increased once the
intelligence report is incorporated into the support for those situation map hypotheses. ELINT
reports are not discarded immediately if they do not confirm an existing aircraft hypothesis.
They are saved for possible confirmation in the future. And exceptional occurrences need be
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considered only when evidence suggests they occur. The close approach of two aircraft leading
to track identifier confusion being the case in point.

This adaptability in the operation of a biackboard system is a consequence of the control
structure's opportunistic invocation of knowledge sources, the knowledge sources’ modularity of
forming or altering hypotheses, and the blackboard's structured composition of hypotheses. Any
knowledge source can be invoked after any other completes, depending on the state of the
blackboard, i.e., of the problem's solution, at that point in time.

The blackboard methodology also provides a means for managing the complexity of large
multi-system report integration problems. Knowledge sources are modular in their applicability
to all nodes of a given level, or tuples of given levels, but only to those nodes. Modularity is
also achieved by expressing a partial problem solution as hypotheses supported by a hierarchy,
or a set of linked hierarchies, of sub-hypotheses uitimately based on input data. Solution to
individual parts of a particular multi-system report integration problem can be conceptualized
and implemented without dwelling on the details of how the results of solving one part are
used in the solutions of other parts.

Standard algorithms can be used where appropriate to solving part of the problem. But
special pre- or post-processing may be required. Such oragmatic features of a standard
algorithm's use in a particular context can be isolated from the algorithm itself by
encapsulating them in separate knowledge sources. Explicitly separating formal and heuristic
aspects of a problem's solution can highlight the heuristic aspects. It illuminates the
assumptions, explicit or implicit, upon which they are based. Modifying the heuristic aspects
without compromising the formal aspects also becomes easier,

5. WORK IN PROGRESS

The Heuristic Programming Project Group of Stanford's Knowledge System Laboratory is
trying (o

« Tealize a new generation of software architectures using parallel computation to
speed up Al applications and

« specify multiprocessor system architectures for carrying out those computations
efficientiy.

Among the issues being investigated are

« recognition of opportunities for parallelism in the solution to a problem and

« expression of that potential parallelism in a problem solving framework that can
exploit it.

In particular, this effort is focusing on signal understanding problems and blackboard-like
frameworks.

Blackboard systems appear to be intrinsically paraliel. At any time, there can be many
potential invocations of knowledge sources. Those involving different nodes seem eligible for
parallel execution. Within knowledge sources, production rule conditions could be evaluated in
parallel. And some production rule actions could be safely executed in parallei. Currently two
different blackboard systems are under development, each investigating a different approach to
expressing opportunities for parallel computation or requirements for serial computation.
Applications of these experimental systems used in evaluating their effectiveness.

The focus on signal understanding probiems follows in large part from the focus on
blackboard systems. The two mate well. But signal understanding problems are important in
their own right. When signal understanding is defined broadly, it includes sensor data fusion
and multi-system report integration. That class of problems is large and of considerable
interest to the military.

Two signal understanding problems have been investigated so far as part of the current
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project. They are referred to as the TRICERO/ELINT and AIRTRAC problems. While
generally similar, each problem is expected to push lhg research into recognizing opportunities
for, and expressing, parallel computation in different directions.

In the TRICERO/ELINT problem, streams of ELINT emitter/bearing measurements must be
combined to estimate the flight paths and operating modes of non-cooperating aircraft. The

problem is ~amed after ESL's TRICERO blackboard system for solving a problem of which
this one is just a component. The knowledge of how to solve the TRICERO/ELINT problem

has already been worked out, albeit without attention to opportunities for parallel computation.
So work on this problem is further along.

The AIRTRAC problem is recognizing aircraft flying across a national border and heading
for particular airfields used by smugglers. The smugglers’ aircraft must be picked out of the
normal air traffic across that border. To solve the problem, aircraft destinations must be
recognized, not just flight paths and types. Streams of radar reports from multiple radar
systems are available. But the low altitude coverage of those radars is assumed to be limited
and the smugglers are assumed to know the coverage limits. So smugglers can try to avoid
detection. They can also maneuver their aircraft evasively to disrupt tracking. Such beha+ sr is
a sure sign of a smuggler's aircraft, but makes the recognition of a destination difficult,

To complicate the AIRTRAC problem further, distributed aeroacoustic tracking systems using
modest battertes of acoustic sensor arrays(1,7) are placed across large holes in radar coverage.
These systems provide tracking reports within their limited coverage. Because such systems are
passive and readily moved, the smugglers are assumed to be unaware of their coverage and so
unable to avoid detection by these systems. These systems also use acoustic signature
information to provide aircraft class estimates along with tracking reports.

initial solutions to both problems should be completed in both experimental blackboard
systems by the end of the year. Moreover, each solution should have been applied to several
problem scenarios on realistic stmulated multiprocessors. These experiments will determine how
much paralletism was realized and may suggest alternative ways of realizing more parallelism.
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ABSTRACT

AN INSTRUMENTED ARCHITECTURAL SIMULATION SYSTEM

Simulation of systems at an architectural level can offer an effective way to study critical
design chorces if (1) the performance of the simulator is adequate to examine designs executing
significant code bodies -- not just toy problems or small application fragments, (2) the details
of the simulation include the cnitical details of the design, (3) the view of the design presented
by the simulator instrumentation teads to useful insights on the problems with the design, and
(4) there 15 enough flexibility in the simulation system so that the asking of unplanned
questions 1s not suppressed by the weight of the mechanics involved in making changes either
in the design or its measurement. A simulation system with these goals is described together
with the approach to its implementation. lts application to the siudy of a particular class of
multiprocessor hardware system architectures i1s illustrated.




1 INTRODUCTION

Simulation systems are quite often developed 1 the context of a particular problem. To a
degree, this is true for SIMPLE, an event based simulation system, and CARE, the computer
array emulator that runs on SIMPLE.! The problem motivating the development of both
SIMPLE and CARE was the performance study of 100 to 1000-element multiprocessor systems
executing a set of signal interpretation applications implemented as "1000 rule equivalent
expert systems” [2].

A set of constraints pertinent to this problem governed the design of SIMPLE/CARE. The
applications represented significant bodies of code and so simulation run times were expected
to be an important consideration. Moreover, the issues involved with the interactions of
multiprocessor system elements were sufficiently unexplored prior to simulation that
simplifications in the CARE system model, specifically with respect to element interactions,
were suspect.  This need for detail was, of course, in tension with the need for simulation
performance. The ways that simulated system components would be composed into complete
systems was initially difficult to bound. Further, it was clear that the models of these
components would be elaborated over time and would undergo substantial change as design
concepts evolved. It was also clear that the ways of examining the operation of these
components would change independently (and at a great rate) as early experience indicated
what alternative aspect of system operation shoul/d have been monitored in any given
completed run.

The design goals that emerged then were (1) that the simulation system should support the
management of substantial flexibility with regard to simulated system structure, function, and
instrumentation and (2) that, in order to accomplish runs in acceptable elapsed times, the detail
of simulation should be particularly focused on the comimunications, process scheduling, and
context switching support facilities of the simulated systemy -- that is, on just those aspects of
system execution critical to multiprocessor (as opposed to uniprocessor) operation.

I.1 Design Time Interaction And Run Time Operation

Encapsulation of the state of design components with the procedures that manipulate that
state is one clear way to manage design evolution. Such encapsulation partitions the design
along well defined boundaries.  Components (by und large) interact with other components
ouly through defined porrs. Connections between components terminate at such ports. When
a system simulation is initialized, connections are traced so that for every port, the simulator
knows the connected (terminating) ports together with their containing components. Once such
intialization is complete, that is, throughout the simulation run, assertions about the state of a
port of one component can be directly translated to assertions about the state of connected
ports of other components.

Partitioning issues of system structure. component hehavior, and instrumentation into separate
domains of consideration helps in managing a design that is both fluid and complex. System
structure, that is, the relationship between components, can be specified through use of an
interactive, graphics structure editor and is largely independent of component function per se.
Component behavior is encapsulated in a set of definitions pertinent to the given class of
component. Each component in a SIMPLE simulated system is a member of a class defined
for that component type. Instrumentation is automaticelly and invisibly made part of the
definition of each simutated component that is to be monitored during a run. This is done by
arranging that the class of every component to be monitored is a specialization of the general
instrumented-box class. The basic data structures and procedures for monitoring simulated
components and maintaining the organizational relationships between each component and its
related instrumentation are inherited through this general, ancestral class and are thus made a
separate, substantially independent consideration in the design.

ISIMPI F and CARF were developed hy the authors at the Knowledge Systems [ab of Stanford University. SIMPLE
1s i descendent of PALTADIO [1] opuinized tor the subset of PATTLADIO's capabilities relevant to hierarchical design
capture and stimulation. Te s writtenn i Zetalisp [4] and currendy runs on Symbolics 3600 machines and T1 Explorers.
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A further partitioning of concerns is employed to separate out the definition of the
application programming language interface and its support (as provided by CARE) from the
underlying information flow control governing component behavior. The behavioral
descripiions of components (which are expressed as sets of condition/action rules) deal
generically with gating information, independently of the structure of the information, between
ports of the component and its internal state variables. This is separated in the component
model definitions from the functions performed to create and manipulate the information so
gated. The simulated implementation of the application programming language support
facilities, on the other hand, relies only on the specifics of the information and its structure
and plays no part in gating it between the components of the system. Changing the definition
of the application language is thus done independently of changing component flow control
behavior. The application programmer and the implementer of the application language
interface may use whatever data structures seem suitable to them, be they numbers and
keywords or procedure bodies and execution environments. The simulation system doesn't care.

The component probe definitions, that is, the specifications of what information should be
captured for each component type, are separated from the descriptions of the behavior of such
components. In designing for flexibility in the instrumentation system, it turned out to be
important to further divide the information presentation from the information collection
issues. The mapping from particular component probes to particular instrument panels and the
transformations to be applied to the information as it passed from a given kind of probe to a
given panel (and between panels) is captured in the instrument specification. This is a
definition of what kinds of panels are included in an instrument, how they fit on an
instrument screen, how they are labeled and scaled, and what information from which kinds of
probes are displayed on each panel. The instrument specification also indicates what kinds of
probes are to be connected to which kinds (that is, which classes) of components in the system.

application code

multiprocessor
gomponent library

programming language
interface

SN

component
interface

probe

specification

design time interactions simulation run
Figure I: Design Time Interactions and Run Time Representations

Putting together all the definitions of components, component probes, panels, instruments,
applications interfaces, and inter-component relationships is done in a set of design time
interactions by a system architect. These interactions are usea by the simulation system to
generate efficient run time representations so that simulfation performance goals can be met.
Figure 1 illustrates the partition between design time interactions and simulation run time
operation. Structure editing pulls together components from the component library to produce
a circuit. Associated with some components in the library, there are definitions for the syntax
and underlying mechanisms of a multiprocessor applications language. These specify the




interface used to provide the program input to the multiprocessor system being simulated.?
The definitions used to generale component probes are associated with each library component
to be monitored. There may be several such definitions, each appropriate to measuring a
different aspect of the associated component's operation. An instrument specification selects
from these definitions, elaborates them with selections from a set of probe operation modules
to include any pre-processing (for example, a moving average) to be calculated by the probe,
and indicates under what conditions what information from the probe is to be sent to which
panels of the instrument and how it is (0 be transformed and displayed there. Instrument
specifications also partition the screen among the panels of the instrument. The end product
of these design time interactions is an instrumented circuit and an instrument. The instrument
comprises a set of instrument panels and a set of constraints relating them to the instrument
screen. The instrumented circuit ties together instances of components, probes, and panels for

a simulation run.

For each defined class of component and its associated probes, the design time interactions
produce code bodies that accomplish simulation operations during a run. It is an attribute of
the underlying Lisp base of the simulation system that changes in these definitions have
immediate effect even during a simulation run -- an important capability during debugging.

2 STRUCTURE AND COMPOSITION

Design time interactions to specify a system include the establishment of component
relationships.  Such specifications can be said to accomplish the composition of the system
from its components and so define its structure. SIMPLE supports hierarchical composition:
components may be described in terms of a fixed set of relationships among their sub-
components. Additionally, such composite components may have function beyond what can be
inferred strictly from their composition.  All this can then be included a higher level
composite {as shown in figure 2) and so on indefinitely until the top level "circuit”, the system
structure, 1s reached.

ﬂ.., n

fifo-butfer ] fifo-vutter L , ¥

operator

evaluator

Figure 2: Hierarchical Composition

The behavior induced on a composite component from its parts changes according to the
behavior of its parts. Thus, for example in figure 2, if al any time during a simulation the
function of CARE operutor components is changed by redefining their operation, the behavior

ZThe language printitives supplied can be used tu define multiprocessor linguage interfuces for cither shared~variable
or value-passing paradigms.  As supplied, the language interface built on these primitives supports value-passing on
streams between objects bul alternative anterfaces can be (and have been) easily defined in terms of the given
prinitives.




of the nine-site grid is in immediate correspondence.’

Composition is described graphically and interactively in SIMPLE by picking a previously
specified component type from a menu, placing it in relationship to other components with
"mouse” movements, and, through the same means, specifying the connections between its
selected ports and those of other components (as indicated in figure 3).
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Figure 3: Graphic Structure Specification

Through another menu selection, ports can be defined for the new composite component so
that it, in turn, can be fitted into yet higher level structures. Such external ports can be
connected directly to ports of sub-components "within" the composite. [f this is done,
information appearing on that external port will be the responsibility of the connected sub-
component. By this same means, a component previously described as a base level component,
can be redefined as a composite of yet lower level elements as its design is elaborated with
further details.

Components and (internal) connections can also be deleted from a library component and
replaced with substitute components. After all sub-components and connections have been
added, deleted, elaborated, and replaced as required, the completed structure can then be entered
into a library of components and used in turn to compose higher or equivalent level
components.

2.1 CARE Base Components

CARE supplies a small library of system level base component types. Currently these are the
net-input, the ret-output, the fifo-buffer, the operator, and the evaluator. The net-input, net-

JHuwever, fur reasons concerning simulation perfurmance and because of (heir relatively low frequency, changes in
the number and names of the internal state variables of components and the structural relationships between sub-
components of a composile are nut reflected in an already instantiated circuil. Changes in the internal struclure of a
CARF site library compunent, for example, will be reflected only in circuits instantiated after the change took effect.
For this reasun and 1o reduce long term storage requirements and load time for the fundamentally iteralive circuits that
we primarily study, we do not keep files of instantiated circuits. They are instantiated as needed from a high level
hbrary component with the same prototypical structure.
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output and fifo-buffer accept (or block), route, and buffer transmissions. They do so in
accordance with a dynamic, flow-controiled, multicast, cut-through communications protocol as
described in [3]. The evaluator does the real work of the application: evaluating the
application of functions to their parameters. The operator does the overhead work associated
with such evaluations: for example, scheduling processes and sending and receiving (but not
routing) messages.

In keeping with the objective of focusing simulation cycles on the aspects of the simulation
particularly relevant to multiprocessor operation, the behaviors of the net-input, net-output,
and fifo-buffer component classes are defined in fair detail, that is, at the register transfer
level. Routing operations are described procedurally and assumed to occur within a time set by
a parameter to the simulation. As indicated previously, the simulation of the operator and
evaluator is broken into two aspects: the control of the flow of information and the functions
performed on that information. The former is described in terms of SIMPLE behavior rules
(as documented in section 3), register transfer by register transfer. The latter is described
directly in terms of procedures and the simulated time taken by such procedures is modeled.
In the case of the operator, this is done as a function of the number of storage cells
manipulated during an operator procedure. In the case of the evaluator, this is done as a
function of the execution time used by the machine executing the simulation, that is, the
simulation vehicle.

2.2 CARE Composite Components

The prototypical composite component supplied with CARE is the site. As supplied, it
includes net-inputs and net-outputs for up to eight "neighboring” components (generally other
sites), a net-input and a net-output with associated fifo-buffers for local receptions and
transmissions, and, finally, an operator and evaluator as described above. Specializations of the
site, for example, the torus-site, exist in the library to fit the site into alternative topologies by
supplementing the site routing and wiring procedures as appropriate to the topology.

2.3 Automatic Composition in CARF,

Although any connection of components can be created by the means noted previously, for
some repetitive, well patterned systems of connections, composition can be automated. The
CARE library includes a component, the iterated-cell, which represents a template for the
creation of composite components by iteration of a unit cell. The unit cells (for example, the
torus-site) are specializations of other components (for example, the site) as just discussed.
The specializations include a method for responding to a request to provide a wiring list. Such
a list associates each source port of a cell with the corresponding destination port (in terms of
port names) and the position of the destination cell relative to the source cell in the iterated
structure. The iterated cell component uses this information to make the required connections
between each of its constituent cells.

3 SPECIFYING BEHAVIOR

SIMPLE is an event based simulator. The behavior of a simulated component is described in
terms of responses to the events pertinent to that component. A component's response may
include consequent events to be handled by the simulator as well as direct operations on
component state. Assertion of consequent events and the responses to them (involving further
consequences) drives the simulation. When there are no more events to handle, the simulation
is complete.

To maintain modularity in a simulation system, responses to simulation events should be
local to the affected component and its defined ports, that is, its connection to the remainder
of the simulated system. The composition system of the simulator maintains the relationship
between ports of ne component and those of other components connected to them. Assertions




relative to a port of a component are thus systematically translated to events pertinent (o
components connected to it. This s the general mechanism for event propagation between
components. In a limited number of cases, a direct operation on a related component may be
appropriate.  With fair warning about its possibility of abuse, a facility is provided to

accomplish this.

3.1 Behavioral Rules

The behavior of a component is described in terms of its responses to pertinent events.
Each event stipulates the component affected, its port or state variable signalled with an
assertion, the asserted value, and the simulated "time"” of the event. The time of an event may
be thought of as the “current” simulation time. Differences in event times represent the
temporal relationship between events. Event times in SIMPLE simulations are monotonically
increasing.

For each type of component, there 1s a procedure to handle pertinent events. The arguments
to the procedure are those stipulated by the event (as just described). The procedure tests for
conditions and, as satisfied, asserts or directly effects consequent actions. The conditions may
include arbitrary predicates on the event parameters and the state variables of the component.

Event based simulators are based on the assumption that state and port variables remain
unchanged until explicitly modified. Synchronous designs, that is, those in which the
opportunities for state change are temporaily quantized to a clock, can be modeled in such
implicitly asynchronous, event based simulators by asserting the clock signal on a port of each
and every clocked component of the simulated system. If only some of the components in a
system need take action on each clock signal, there is an obvious inefficiency in this approach
that is crippling for systems with even a modest number of components.

If, however, event times in an event based simulator are restricted to integers, the clock can
be assumed. All that is needed is a way to detect the event for which a boolean combination
of conditions as strobed by an assumed clock 1s first met. Primitive condition predicates are
supplied for detecting an “edge” (a value changed by the current event) with a coincident
"level” (a value set before the current event) of two ports or state variables of a component in
either of the two possible event sequences. The predicate both-states in the example
evaluator behavior rule shown in figure 4 has these semantics.

s 1f the evaluator is ready and there is at least vne runnable process...

((or (both-states Evaluator-Status? 'ready Evaluator-Queue-Status ‘'some)
(both-states Evaluator-Status 'ready Evaluator-Queue-Status 'full))
.. make it current, start evaluation, and adjust status us per removal.

(setq Evaluator-Status 'busy) :block rule
(assert-state Evaluator-Status 'busy now) inext event
(setq Current-Evaluation (queue-take Evaluator-Queue)) :note process
(user-evaluate Current-Evaluation now) rexecute it
(send self :evaluator-queue-decreased now)) inote chunge

Figure 4: Example Condition/Action Behavior Rule

Figure 4 illustrates the generality of SIMPLE behavioral descriptions. The underlying object-
oriented programming system, Flavors [4], in which SIMPLE is implemented provides for
direct reference of component state variables. The conditions and actions of behavior rules for
a component then need only name the component’s port or state variable (as stipulated in the
definition of that component type) to get or change the appropriate value in the component
instance for which the event is pertinent. Actions may include arbitrary procedures: for
example, the procedures user-evaluate and queue-take in the given example.

4 .
By convenuon, cumponent state vaniables are winten mm owapilahzed torm.




3.2 Using Methods

The environment for the execution of the procedures defining responses to events includes
the state variables and ports of the component instance for which the event is pertinent.
These procedures are Flavor methods [4] (in this case corresponding to the :ApplyRules
message) of the component type and, as just noted, refer implicitly to the state variables of the
component instance handling the event. Other methods may be defined for simulated
components: for example, the :evaluator-queue-decreased method invoked in figure 4.
Such methods have proved to be a natural way to realize the functional operations of
components not described by behavior rules.

The composition system leaves information about the enclosing and contained component
instances for each stmulated component in system defined state variables of that component,
With this information, methods directly referencing the ports and state variables of such
related components may be invoked as needed. This is a useful but sharp-edged facility, The
warning about loss of modularity given previously applies here.

4 INSTRUMENTATION

The results of a simulation are primarily the insights it provides into the operation of the
simulated system. The “insight" we frequently experienced using an early version of the
simulation system was that more interesting results could have been produced by the run just
completed if only the instrumentation had been different. With this in mind, the design for
the current version of the simulation instrumentation system was aimed at flexibility. This
was attained without significant performance impact by building efficient run-time system
structures before each run, as outiined in section 1.1, from the declarations defining the
instrumentation.

The organization of the instrumentation system is pictured in figure 5. The simulator
interacts with component instances through assertions, that is, calls on an assert function, in
bebavior rules (the methods associated with :ApplyRules messages). All instrumented
components are specializations of an instrumented-box (as well as other classes) After each
invocation of :ApplyRules for such components, the :ApplyRules method for a generic
instrumented-box is applied.  This causes invocation of the :trigger method for each
component-probe associaled with that component.  Since this flow of measurements is
accomplished by means invisible to the the writer of behavior methods for a component, the
concerns surrounding component design are effectively partitioned from component
instrumentation.  The remainder of this section details these “invisible” means used to
accomplish measurement flow during a simulation run as the measurements are staged from
components through component probes (o instrument panels.

4.1 Component Probes

The first filtering of events is done by component probes. Some events cause no further
measurement activity since, as it turns out, not all events merit action on the part of the
instrumentation system. The parameters of the event and the ports and state variables of the
instrumented component dealing with the event are available to the component probe as are
the state variables of the probe itself. Each piece of the selected information is tagged with an
identifying keyword and passed along as the parameters of the :trigger method along with a
keyword identifying the type of component probe, a number representing the current event
time, and a pointer (o the component with which the information is to be associated in the
display. This pointer might be (0 some component related to the one actually handling the
event, for example, the component enclosing it.

Component probes may be composed of predefined probe operation modules to do standard
calculations (for example, moving averages) and then to forward the results to selected panels.
In order to automate the composition of probes to accomplish such operations, each of these
operations is chained together by invoking the method for that probe that is associated with
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:ApplyRules
:create

.create

¢ component-Erobe

:select < :calcula

Figure 5: Instrument System Organization

the system-defined message name of the generic next operation. Thus, the :trigger method
calls the :calculate method of the probe which, in turn, calls its :select method which,
finally, calls the :update method of the selected panels associated with the probe. Probes are
composed by naming them as specializations of appropriate probe operation modules (for
examiple a :calculate module for moving averages) as desired. The default, if no
specializations are stipulated, is to pass through information without change to all the panels
associated with a probe.

Information flow between components and panels is accomplished by the component probes
associated with each instrumented component. The creation of such component probes and
their association with appropriate components (by execution of :add methods) accomplishes
the instrumentation of a circuit. This is done when an instrument is created. During
simulation initialization, the components of the circuit (and their sub-components) to be
instrumented are (recursively) examined by each template probe defined for the instrument to
see if they are to be monitored. If so, the :copy method for the given template probe is
invoked to create a new instance of the appropriate component probe and add it to the probes
connected to the component. Each template probe previously received the identifiers for the
panels to which its clones should send information. These will be the panels identified when a
component probe invokes the :update method.

4.2 Instrument Specifications

The operations performed by an instrument panel are to:

o Find information previously stored according to the component pointer supplied by
the :update method;




o Link new data structures as needed (to save such information) to other such
structures of the panel;

« Save in these data structures the results of expressions that reference indicated
keyed information from the :update parameters and the prior contents of the
structures;

« Send the results of periodic analyses on the information associated with a panel for
display by the same panel or by some other; and

» Show processed information in the manner specified for the panel.

The defaults for the panel operations supply the most commonly required specifications
implicitly, so simple operations are simply specified. These defaults can be overridden as
needed and either predefined or user specified alternatives for the panel operations can be
selected in their place. Arbitrarily complex (Lisp) expressions can be used to specify the
transformations between the information provided by a probe and that saved and displayed by
the panel.

These transformations and all the default overrides for the panel operations that are
stipulated in the instrument declaration are scanned when a new instrument is created for a
simulation session. They are compiled at that time into code bodies referenced by run time
control blocks associated with each panel. A simulated system is instrumented by examining
all of its components and attaching to each component the copies of template probes specified
by the instrument definition that are appropriate for the component (by means of calls on the
:copy and :add methods for the probe). This can be a many to many relationship as shown
in figure 6,

panels probes components
mapping
{boxes and lines] net-output-ltoad
system-history net-output
[scrolling line plot} et-output-connectio
operator-network
[seif-scaling line plot] operator-load
process-latenc operator
[seit-scaling point piot operator-latenc
producer-limited
scrolling text with scroll bar evaluator-ioad
consumer-limited — evaluator
[scroiling text with scroll bar evaluator-latency

Figure 6: Instrument Probe and Panel Relationships

Component probes to measure "load” and “latency” are specified in the given example for
each operator and evaluator in the circuit. The "load” and current "connection” for each net-
output 1s also to be monitored. Some panels, for example the one showing "consumer-limited”
processes, receive inpuls from only one type of component probe, those measuring evaluator
latency. Others, such as the one measuring "process-latency” receive inputs from more than
one kind of probe (in this case, from probes measuring operator latency as well as those
measuring evaluator latency). A way must thus be provided to distinguish the type of probe
sending information to a panel; this is described in the next section.




Some probes send information (o only one»panel. for example, the net-output connection
probes. Others monitor information which s needed by several panels, for example, the
operator latency probe. Transformation of the raw information provided by a probe will need
to be specialized to the information expected by each panel receiving it. A general way (0

stipulate these transformations is stipulated in the next section.

5 EXAMPLE PANELS

Some example panels are described in this section to give a feel for the instrumentation
possibilities available in CARE and elaborate on how the requirements described in the
previous section for probe type identification at a panel and per panel specialization of the

information provided by a probe are handled.

5.1 Point Plot Panels

The first panel (shown in the left half of figure 7) is an example of a point plot panel used
to generate a scatter plot. As an option, only points representing simulated activity over a
limited past history from the most recent event time are kept for display. In this example,
resource load® information is provided by the operator-load and evaluator-load component
probes attached respectively to the operators and evaluators of the system.

SITE CORRELATION
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Figure 7: Point Plot and Scrolling Line Plot Panels

The balance between the "availability” of the evaluator and operator of each site, that is, the
complements of their respective loads, is displayed during the simulation as events are
processed that change this measure. In order to avoid capturing information at too fine a
temporal granularity, previously gathered information for a given site is overwritten if it is
within a given sampling interval of the new information. Information that is beyond a given
history range is dropped. The scale of availabilities displayed is fixed between 0 and 1.0. The
panel specification to declare all this and to also stipulate the axis labels is shown in figure 8.

5Rcsuurcc load is defined as (1 - | /7 (1 + aggregale-queue-length)) where the aggregate queue-length is the sum of
the lengths of all queues providing work fur the resource.
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'((("Operator”) (0 1.0) (- 1 (:operator-load :busy))) i Bottom axis

(("€Evaluator™) (0 1.0) ((- 1 (:evaluator-load :busy)))) :left axis
:find (find-sample-distinct (:simulator :time) ,sampliing-interval)
:show (recent-history (:simulator :time) ,point-panel-history-range 0))

Figure 8: Site Correlation Panel Specification

5.2 Scrolling Line Plot Panels

An example of a scrolling line plot panel is shown in the right half of figure 7. This panel
sums the loads seen by the resources in the simulated system and displays this as a strip chart,
the "system history”. Some of the same probe load information used by the previous panel is
used in this panel as well, but with different transformations defined in the panel specification
as shown in figure 9.

"((("Simulated Time [us]") (.history-range) (:simulator :time)) ;Bottom
(("Network") (0 ,sites) (:net-output-load :busy save-sum)) iLeft
(("Processing™) (0 .sites) i Right

(average (:evaluator-load :busy save-sum)
(:operator-load :busy save-sum)))
:find (update~history (:simulator :time) ,sampling-interval)
:show (recent-history (:simulator :time) ,history-range 0))

Figure 9: System History Panel Specification

Line plot panels may have two independently scaled vertical axes. For the system history
panel shown, the sum of network loads as indicated by the net-output components of the
system is plotted against the left axis and the sum of the processing loads provided by the
current average of the sums of the operator and evaluator loads is plotted against the right
axis.  Event time is plotted on the horizontal axis. The update-history function uses the
component pointer to find the information previously saved for that component and records
the current event time as the (:simulator :time) so that it may be used to display
information correctly on the horizontal axis. The current sums of the evaluator loads and the
operator loads measured by the system are stored in a record for the given event time (or a
prior event time within the specified sampling interval) by the calls to the save-sum function
specified as part of the save operation.

5.3 Self Scaling Line Plot Panels

Figure 10 illustrates both the self scaling of displays and the use of a display analysis
operation. For this self scaling line plot panel, two pieces of data are collected for each
operator in the system: the load on the operator, shown on the right axis, and the latency of
the information it has most recently received. This last item is provided by the operator
latency probe in two paris: (1) the interval between the creation of the information and its
receipt by the net-input feeding the operator and (2) the interval between such receipt and the
operator taking action on it. There are thus two curves plotted on the left axis. The
specification stipulates a list for the left axis display. The elements of this list are the "net
delay” and the sum of this meusure and the "operator delay” monitored by the operator latency
probe. Since both defays are non-negative, their sum must be at least as large as either one
taken alone: the two curves may be superimposed but can not cross. The difference between
the two curves is the incremental delay added by the operator.

The panel specification for the operator-network panel is shown in figure 11. In addition to
transformations shown previously, an analysis function is stipulated for the send operation of
the panel. The information saved from each of the probes sending :update messages to the
panel is to be sorted from the greatest to the least values of the associated sum of delays
described above. This information is to be saved as the operator latency rank and used as such
to determine the position on the horizontal axis that the delay and load information will be
displayed.
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Figure 10: Self Scaling Line Plot Panel

"((("Operators”) (1 ,sites) (:operator-latency :rank))
((("Latency” "us")) (0 nil) :Second string: 90 degree baseline shift
((:operator-latency (:net-delay (+ :net-delay :operator-delay)))))
(("Load") (0 1.0) (:operator-load :busy))
:send (sort-arrays
((.#'> (:operator-tatency (+ :net-delay :operator-delay))))
((:operator-latency :rank))))

Figure 11: Operator-Network Panel Specification

5.4 Boxes and lines Panels

Perhaps the most intuitively satisfying of the types of panels available is the boxes and [ines
panel, a graphic representation of a circuit showing its components and their interconnections.
An example of such a panel is shown the left part of figure 12. This class of panels uses
information left behind by the structure editor when the circuit was defined. Its form is thus
automatically generated. The position of the components ("boxes”) and the connections
between them ("lines”) in the display are used to animate system operation. In the example
shown, the shading (or color) of the boxes is used to indicate the availability of the evaluators
in the simulated system as the simulation proceeds. Darkest shades indicate highest availability,
that is, empty queues for utilization of the resource; lighter shades indicate lower availability,
that is, longer queues. The lines between boxes indicate communication paths that are in use,
that is, not ":free" at the time of the most recent show operation for the panel.

The panel specification for the mapping panel, an instance of a boxes and lines panel, is
shown in figure 13. There are two specifications for the panel: one for the boxes and one for
the lines. The specification for boxes in the panel stipulates that the availability of evaluators
in the sites corresponding to the boxes displayed controls the shading of those boxes. The
scale is defined to run from 0 to 1.0. The specification for lines in the panel uses the
connection information reported for the net-output to determine line placement on the display.
When the status is reported as :free. the connection information is dropped from the panel
and the corresponding lines are removed.
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Figure 12: Boxes and Lines Panel and Scrolling Text Panel

"((("Evaluator Available”) (0 1.0) (- 1 (:evaluator-load :busy))))
"((("Packet Trace"”) nil (:net-output-connection :points))

(("Packet Status”) nil (:net-output-connection :status))

:find (find-and-remove ,#'eq (:net-output-connection :status) :free)))

Figure 13: Mapping Panel Specification

5.5 Scrolling Text Panels

Sometimes, the most appropriate way to display information is to show it as text. Based on
a similar facility provided by the underlying Lisp system, the scrolling text panel provides a
scrollable window into lines of text. [n the right part of figure 12, the delay in each process
execution while waiting for something to do, that is, the event time interval spent waiting for
an appropriate task to appear on a certain stream of tasks, is shown together with the process
that finally produced the awaited work. This information is sorted so that the text lines
appear from the greatest stream waiting interval to the least.

"((() ("~4D ~A") _
((fix (:stream-waiting :interval)) Jurst tieid
(let® ((origins (packet-origin (:stream-waiting :packet)))
(origin (if (listp origins) (first origins) origins)))
(remote-address~local origin)))) :second field
:send (sort-arrays ((.#'> (:stream-waiting :interval))) nil))

Figure 14: Producer Limited Process Panel Specification

The values and formats used for display in a scrolling text panel are defined much as in
previously defined panels. Format control strings take the place of scale information. As
usual, values are described by a tist of forms, each one of which specifies the transformations
to perform on information received from probes. The example specification in figure
14 shows the generality with which probe information can be incorporated in Lisp expressions




to produce transformation specifications. The information used to generate the value for the
second field of the text display is based on the origin of the task packet that arrived on the

stream the process was waiting for.

5.6 Noting Simulation Parameters

The CARE component models are parameterized through menu interaction as shown in
figure 15 to allow easy variation of their performance characteristics relative to each other.
Additionally, the site model parameterizes allernatlive routing strategies: directed, that is,
blocking when progress can not be made toward the goal; spiraling around the goal if progress
toward it is blocked; and dithering, that is, routing away from the goal even if only the last
link towards it remains to be acquired. The rate at which each site accepts application data is
also a parameter, the data rate and can be used by an application to control how hard it

drives the simulated system.

S1MuU]at1on Paramerer s

Data Rate ([u3]: 25.9
Evaluation Duerride [(us]: NIL
Stack Group Switch Duerride [uws]: 1.9

Process Block Creation Querride [ws]: 4.0
Stack Group Creation Override [us]: 20.9

Operator Hord Touch Time [ws]: a.2

Communicartion Cuycles: 4
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Ficure I5:  Parameter Menu

Many of the CARE parameters are specified as overrides. If not specified, the corresponding
performance is laken as measured on the simulation machine. Thus, the evaluation override,
that is, the time to perform an evaluation can be specified as non-nil in order to fix the time
that each user evaluation will take. (This is useful in making runs repeatable for debugging).
The time that it takes to switch context can be specified as the stack group switch override.
Similarly, the time (v creale a process control block and a stack context for that process can be
taken as given rather than measured by specifying respectively the process block creation
override and the stuck group creation override.

The time required for operator execution is modeled in terms of the number of words the
operator must manipulate in handling a given message. The manipulation time per word is
specified by the operator word touch time. Lastly, the performance of the communication
subsystem is specified as communication cycles. This s done in terms of the minimum
number of evaluator data path clock times (that is, event times) required for a 32-bit word to
pass a given point in the network. Thus the parametric specification, "4 communication
cycles”, dictates that 8 bits may cross such a boundary each time the evaluator passes through
one event time. If the communications path were narrower or the base communication clock
rate were lower, a higher number would be specified.

N :
F/zslﬂ 99:54:49 32 OIRECTED Cyc'es, Acceleration 2, Creetion 2000.s, Switch 25Qas, E.aluation 2%a.s, Data 15as

Figure 16: Annotation Panel

The tast example of SIMPLE panels is the annotation panel as illustrated in figure 16. This
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the date, time, and parameters of the simulation run as well as
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in an instrument screen according to a set of layout
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By experience, it is
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6 USING PROGRAM DEVELOPMENT TOOLS
The SIMPLE/CARE simulation system is integrated into the underlying Lisp machine

program development

model and application language interface h

environment.
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The objects and data structures at both the component
ave abstraction interfaces that provide summary




state information when they are displayed in text form. These text abstractions are "mouse
sensitive” in the development machine environment and so can be inspected at successively
finer levels of detail as desired.

[n figure 18, the net-output components of the site at grid coordinates (3 2), the particulars
of the net-output on the east side of the site (that is, net-output-3), alyd a summary of all
the sub-components of the site at (3 2) are being inspected. This same kind of view into the
progress of a simulation is provided in the debugging process and may, as shown in figure 19,
refer to the conceptual entities of the application that is driving the simulated system.
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Figure 18: Inspecting Simulated Components

In the example shown in figure 19, a distributer process running on the evaluator at site

(1 1) has made an improper call on the update-locale function during execution of its
:start method. It might have been appropriate to investigate this situation in terms of the
modeled components. That could be done, for example, using the debugger to inspect the
evaluator component, its enclosing site, related net-output components, or whatever eise at the
component model level seemed relevant. In this case, what was done was to use a few mouse
clicks to indicate interest in the source file for the distributer :start method generating
the problem. [t was brought up for review and control was then transferred to an editor using
the underlying program development environment as shown in figure 20.

Because of the implementation system chosen for the realization of SIMPLE/CARE, at any

point in the simulation, procedure; either in the application or in the component models can
be modified, incrementally recompiled (within a few seconds), and be made effective for all




calls on them -- even those in_the.interru
backed up to some previous point In the stac

pted stack frame. Thus simulation execution can be
k frame and retried (given that intermediate side

effecting code, if any, is safely re-executable).
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7 CONCLUSIONS

The goals of simulation flexibility and simulation environment completene: . have been dealt
with in the ways described throughout this paper. [n summary, the system is flexible in that it

supports:

. Arbitrary data types and lengths in simulation. The information whose flow and
creation is controlled by simulated components may be of arbitra[y complexity
-- from numbers and keywords to procedure bodies and execution environments.

« Instantaneous effect of definition change at both the application and component
modeling level (even during a simulation run).

« A broad range of instrumentation customization. Customizations may involve
arbitrary expressions for probe data transformations, many to many probe to panel
mappings, information from summary analyses on one panel’s data included in
another, and control of what state is saved and for how long.

« Separation of probe and component definitions to facilitate their independent
modification.

« An application language interface that is easily extended or changed without
recasting the information flow control described by the component behaviors.

While there is always room for additional capability®, SIMPLE/CARE is a usefully complete
system. It now includes: :

« Supplied components for a network .nultiprocessor simulation with many of their
parameters customizable by menu interactions.

« A hierarchical structure editor that currently provides automatic grid and torus
composition operators.  (Automated composition of richer topologies, such as
hypercubes, has been provided for in the basic design).

o A rule language that supports a synchronous design style without incurring the
overhead of (naive) synchronous simulation.

« Method invocation for functional simulation that is integrated into the behavioral
simulation rule system and which provides for operations by and on both local and
hierarchically related components.

« Method specification design aids provided by the underlying program development
environment (for example, method dictionaries and quick access to method sources
from the debugging system).

« An evolved set of panel templates providing sorted, scroilable text lines as well as
self and fixed scaling, "two and a half" dimensioned, history sensitive displays
which may be scatter plots, strip charts, line graphs, intensity maps, and signal
animations.

We set off to build a multiprocessor simulation system with performance adequate for the
understanding of multiprocessor systems executing significant applications. The
SIMPLE/CARE simulation system has been used to study the operation of "expert systems" of
respectable size [2].  Depending on instrumentation load, these studies have involved
simulation runs from 20 minutes to several hours each. While faster would surely be better,
performance has proven adequate (o these needs.

6A histogram panel, for example, is just now being added v the system
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ABSTRACT

LAMINA provides extensions to Lisp for studying expressed concurrency in functional
programming, object oriented, and shared variable styles of computation. The implementation
of the support for all three computational styles is based on the common notion of a stream, a
“datatype which can be used to express pipelined operations by representing the promise of a
(potentially infinite) sequence of values. A pipelined algorithm to provide the sorted order of
sequences of set elements is presented in the functional, object oriented, and shared variable
programming styles for comparison.

In addition to demonstrating that a common set of primitives based on the notion of a stream
is adequate for support of all three styles mentioned, LAMINA illustrates the means by which
software pipelines may be managed and the means by which dynamic structure creation,
relocation, and reclamation may be localized in a multiprocessor system.

Algorithms and applications written in LAMINA may be run on the SIMPLE/CARE simulation
system in order to study their execution on alternative multiprocessor architectures. This has
been done for two "expert system” applications and linear speedups over the range from one to
eighty processors have been measured using LAMINA.




1 Streams, Values, and References

The SIMPLE/CARE multiprocessor simulation system [4] supports an applications programming
interface, LAMINA, which currently is built upon Zetalisp [14]. LAMINA has been used as the
basic programming language for two “expert system” application developments [2, 10]
demonstrating significant speedup with increasing numbers of processors. LAMINA includes
primitive mechanisms and language interface syntax for alternative approaches to the
expression and management of concurrency and allows their relative performance to be
measured on a common ground.

Functional, object oriented, and shared variable programming styles are all directly supported
by LAMINA. The support provided for these styles is described in sections 2, 3, and
4 respectively. Section § describes some general utility functions. Primitives implementing the
underlying mechanisms are described in an appendix. A second appendix lists the constructs
of LAMINA and provides references into the body of the paper for details. The remainder of
this seciion consists of background material describing how the values of one computation are
passed to another and how the address space of an application is spread across the processors
of a system in LAMINA.L

1.1 Futures and Streams

Futures [5, 6] and streams [8, 11] provide the common ground between functional, object
oriented and shared variable programming in LAMINA. They are fundamental to the LAMINA
functional and object oriented programming regimes for parallel programming and, since they
are the only mutable items passed as references (rather than structure values) between

potentially concurrent computations in LAMINA, they are also used to build the mechanisms for
shared variable computation.

Futures and streams represent promises for values. We can arrange for promises for values,
that is, their futures, to be used as placeholders in a computation while the values themselves
are being eagerly {8] produced by concurrent evaluations for consumption as available.
Extending this idea, we can define a stream as an abstract data type which is a placeholder
representing a sequence of eagerly produced but potentially unavailable values.

Some operators do not require the actual values promised by a stream or future in order to
perform their work. For example, a constructor may create data structures that include streams
as structure elements. The creation can be accomplished without accessing any of the promised
values that the streams represent; referencing streams as placeholders is sufficient. Further,
streams, as sequences of potentially unavailable but eagerly produced values, can be used to
build pipelines of computation connecting the producers and consumers of such values.

Streams may be arguments to or the results of function application. In LAMINA, streams are a
primitive data type developed for use in an object oriented programming style and futures are
a specialization of streams that represent only a single (potentially unavailable) value as
required for the functional programming style. Streams and futures are always passed as
references. In the remainder of the paper, the term stream or future is equivalent
(respectively) to a reference to a stream or a future.

1.2 Processor Address Spaces and Multilevel Allocation

In LAMINA, structures of arbitrary complexity can be supplied as a value of a stream or future
either local or remote to the processor address space in which the structure was generated.
Internal pointer references within copies of such structures are adjusted (for address relocation)
as the copies pass between the originating processor address space and the processor address
space of the stream that represents the promise for the values so supplied. External pointer

1dF:oomo(u in the paper generally deal with details, conventions, or implemenation issues that can be skipped on first
reading.
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references included in structures passed between spaces are restricted in LAMINA to locations in
global dymamic or static address spaces as shown in figure 1. Statically allocated structures are
not relocatable or reclaimable and may be regarded as cacheable and immutable. Thus, they
may be globally referenced without a need for access coordination.

structured value

application™

processor 1 | processor 2

Figure 1: LOCAL, DYNAMIC, & STATIC ADDRESSES

When vaiues are passed between processor address sp~ces the structure representing the value,
that is. the structure vaiwue, is recursively copied until a data structure is produced which has the
same form and internal relationships as the original value but which holds only: sratic
references (to code bodies and other structures in static space), dynamic references (to streams or
other structures) in dynamic space, intermal references (to subcomponents of the structure
value), and self-referentials (for example, numbers and characters).2 Copying of a structure
value might be done asynchronously with evaluation of the user application, s - if changes are
to be made in the structures encompassed by a structure passed between address spaces,
independent copies of such structures should be formed.

An example of values and references passed between processor address spaces is shown in
figure 1. One of the values of the indicated stream in the application's processor 2 local
address space is a copy of the structure value in the application’s processor 1 local address
space. Both structure values are heap allocated from independently managed heaps in separate
local spaces. Allocation, relocation, and reclamation for each given heap may be done
asynchronously based on just the information in the associated processor address space. The
other value shown for the indicated stream in figure 1 is a reference (in this case, to the
original structure value) allocated in the application's dysamic space. Because the reference and
its associated structure value are allocated within a single processor, relocation of the locally
allocated structure value can be done locally and asynchronously. Relocation of the reference,
howeve:.d must be globally coordinated. Statically allocated structures are not relocated or
reclaimed.

zAs & current implementation restriction, lexical closures [12] passed between processor address spaces may only be
made over free variables whose values are references or self-referentials items and not structures that contain them.




References to streams are allocated in dynamic space and streams are accessed by reference. A
stream reference, therefore, may only be relocated (for example as required by a compacting
garbage collector) through globally synchronized operations affecting all computations that
could access that stream. This global synchronization can be expensive and involve subtle low
level implementation considerations. Expectations about the expenses involved in correct
global syncronization? led the design of LAMINA to a multi-level allocation scheme described
below.

The cheapest approach to allocation (and dealiocation) of memory for dynamically created
structures is stack-based (and local). However, the benefits of stack-based operation come at
the cost of a prescribed order of deallocation. Additionally (at least for the commonly used
memory management enforced stack limit schemes), stack-based operation entails a minimum
storage commitment that is significantly larger than the rest of the execution environment for
each highly concurrent, small granularity evaluation expected in LAMINA programs. Stack based
allocation is used in LAMINA whenever references to structures with dynamic extent [13] are
known to be entirely within a given sequential computation.

The next cheapest approach, for references that are local with indefinite extent [13], is heap
based allocation in local space. Since such references are confined to a single processor address
space, they may be relocated asynchronously with operations on other processors and memories
or in the network connecting the components of the multiprocessor system.

Finally, as the most expensive approach, global references may be made to dynamically
allocated references (which must be relocated under a global synchronization scheme).
Allocation in dynamic space is done independently by each processor and each allocation is
distinct. Operations involving dynamically allocated references are handled by the processor
(or memory controller) associated with the reference. The referents for such references are
mutable and may be viewed as uncacheable.

References to locally allocated structures can also be passed between processor address spaces by
encapsulating them in dynamically referenced structures, that is, streams. By this indirection,
pointers to selected locally allocated structures are held locally (and may readily be relocated)
but a means is provided to reference them in other processor address spaces.

The multi-level allocation scheme just described creates references passed between processor
address spaces (with the attendant synchronization expenses) only as necessary. The remainder
of this section describes the syntax for creating and accessing such references.

1.3 Reference Creator and Accessor Functions

When a locally allocated data structure needs to be passed between potentially concurrent
computations as a reference rather than as (a copy of) its value, the form (reference item)
returns a reference for the value of the item.

The site of a reference, that is, the CARE processor (or memcry controller) on which it was
created, may be determined by executing (reference-site reference). The value returned by
calls to this function is a site refrence that may be used to specify sites as required as
parameters of other LAMINA functions.

Finally, references can be tested to determine whether they refer to the same item by the
function reference-eq, a function that accepts two references as arguments and returns a
non-nil value if they refer to the same item.

3For example, in a shared memory system with asynchronous writes to memory, a request to change the contents of a
location in dynamic space so that it points to a stream in a given semispace of a compacting garbage collector may
have been in transit to 8 memory controller when evacuation of that semispace was requested. The evacustion must be
delayed somehow until all such requests either in transit or queued anywhere in the system have been processed.
Shared memory systems with synchronous writes delay all processor operations on shared variables until the memory
request can first traverse the network between processors and memories (or other caches), then be queued and serviced
in the memory (or other cache) controllers, and finally traverse the network back to the processor.
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2 Functional Programming

Perhaps the style of computation most readily treated as concurrent is that of functional
programming. LAMINA supports concurrent programming using this style by providing means
(1) to spawn computations that will provide values to futures and (2) to accept such values in
a computation -- scheduling the computation when they are available. The constructs defining
the LAMINA interface for functional programming are:

o (future form) spawns execution of a lexical closure, that is, a procedure body to
execute a given form together with an environment (determined by the rules of
lexical scoping) in which to do the execution [13]. This closure is executed
(eagerly) on a randomly selected site. A future which will contain the value of the
computation when it is available is immediately returned.

o (with-values future-bindings forms) spawns an evaluation on the local site to
execute the closure corresponding to the forms. The evaluation is done within an
environment that includes bindings for given variables to the values available for
the indicated futures. The evaluation is deferred until all of the indicated futures
have values that are not themselves futures. The immediate result of executing a
with-values form is a future whose value will be supplied by the deferred
evaluation.

Each element of a future-bindings list is itself a list: (binding-pattern future-specifier). If
evaluaticn of a future specifier in a with-values construct produces a value other than a
future, the future specifier is coerced to be a future holding that value. After all specified
futures have values (which are not themselves futures), the values of each of the futures are
destructured [13], that is, the values are treated as list structures and the elements of these list
structures are used to bind corresponding variables in a binding pattern of arbitrary depth.
These bindings will be included in the environment in which the spawned computation is
executed. Only with-values can be used in LAMINA to reduce futures to values. Values of
futures are never taken as an ancillary consequence of any other operation.

The results of the evaluation spawned by with-values are returned as a future which will
receive the value of the spawned computation. The spawned evaluation that is created by a
with-values construct is treated as the continuation [12] of the computation in which it is
found and, as such, captures all stack allocated values required to execute that computation.
Thus, each spawned computation may be viewed as running to completion; its continuation, if
any, is an independent spawned computation.

Because all spawned computations run to completion (unless they are preempted by system level
operations), the stack of the executing processor is (generally) left cizar and any space allocated
for it may be reused by the next computation on that processor. By this means, the advantages
of stack-based operation are retained without incurring the space penalty discussed in section
1.2. The costs of heap allocation are incurred only as needed.

To illustrate the use of the LAMINA functional programming interface, the implementation of a
(quicksorting) algorithm to associate ordering information with the numerical values of the
elements of sets supplied as input is shown in figure 2. The serial and parallel
implementations may be compared by contrasting the definitions of the functions order0 and
orderl,

The input to the ordering functions is sets of numbers to be ordered. Elements of a set are
the sequential elements of a list before a separator token (which is nil1). The sets (including
their separator tokens) are concatenated to form the input list. The output is a list with each
ordered set represented by successive elements of a list and separated from other ordered sets
by nil tokens. The sets follow each other in the output in the same order in which they
appeared in the input. For example, the input list (7 9 4 nil 5 3 8 nil1) would result in
the output (4 7 9 ni1 3 5 8 nil). Thus the information concerning the ordering of the
elements of a set and the identity of that set is implicit in the output.

In order0 and orderi, the result of ordering nil is nil. If the input list is not ni1, the
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(DEFUN ORDERO (input-list) .
nSerial quicksort to order elements of input sets"
(ifr %null input-1ist) nil
let ((pivot (car input-list)))
(it (null pivot) ‘(nil . ,(order0 (cdr input-11st)))*
2destructuring-b1nd zsmaller larger rest)
partl pivot (cdr input-list))
(1et ((ordered-smaller (order0 smaller))
ordered-larger (order0 larger))
ordered-rest (order0 rest)))
'(.8ordered-smaller ,pivot ,Qordered-larger
,ordered-rest)))))))

(DEFUN ORDER1 (input)
"Without pipelining: recursively spawn ordering partitioned input sets”
(with-values ((input-list input))
(if (null input-1ist) nil
(let (§p1vot (car input-list)))

(if (null pivot)

with-values ((rest (orderl (cdr input-list))))
'(ni1 ., ,rest))

(destructuring-bind zsmaIIer larger rest)
partl pivot (cdr input-list))
(with-values ((ordered-smaller (future (orderil smaller;))
ordered-larger (future (orderl larger))
ordered-rest (future (orderl rest)g))
‘(,8ordered-smaller ,pivot ,8ordered-larger
,ordered-rest))))))))

(DEFUN PART1 (pivot input-1ist)
"Serial: add elements from input list sets into one collection or other”
(1et ((input (car input-1ist)))
if (null 1nput) '(nil nil ,dinput-1ist
destructuring-bind 2sma11er-part arger-part rest)

partl pivot (cdr input-list))
(it (> input pivot)

‘(.,smaller-part (,input . ,larger-part) .rastg
'((.,input . ,smaller-part) ,larger-part ,rest))))))

Figure 22 FUNCTIONAL ORDERING

first element of that list is used as a pivot. If that element is n11, it is a separator token.
The result then is the separator followed by the result of ordering the rest of the list. If the
pivot element is not nil, it is assumed to be a number that is used by partil, a serial
partitioning function which returns a list of three results: the (unordered) elements of the

current set smaller than the pivot, the (unordered) elements of the current set larger or equal
to the pivot, and the remaining elements of the input.

The function order1 spawns executions to apply itself to each of the three sublists returned by
partl to order them. It then waits for the results. When these are available, it appends the
ordered sublist of elements that were smaller than the pivot to the list formed by the pivot, the

ordered sublist of elements that were not smaller than the pivot, and the result of ordering the
rest of the sets in the input.

The operation of orderl is characterized by much waiting for the results of spawned

‘Due to printing limitations, the backquote character will appear as *. Inclusion of a comma in the form introduced
by a backquote will disambiguate the quoting character.
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Figure 3: ORDERING PIPELINE

computations. The pattern of execution is to spawn a set of computations -- using future
constructs -- and immediately wait for all their values to be produced -- using with-values
constructs. This waiting represents serialization due to data dependencies and can significantly
limit the concurrency-of an algorithm. If, instead, computations can be handed just what they
each require to get started (with promises for the rest), they can be pipelined as computation
assembly lines, each station operating on a piece of the input from upstream producers and
delivering a piece of the output to downstream consumers.

A schematic view of a pipelined ordering algorithm is shown in figure 3 while the code is
shown in figure 4. The schematic is a recursive drawing terminating in a number of ordering
computations -- one leaf for each element and separator token in the sets of elements to be
ordered. Each non-leaf node of the ordering tree partitions its input by sending each input
element it receives (from its upstream parent) to one of its two downstream children. The
smaller child was created such that its result is used as the result that the parent was asked to
produce and the rest of its input is the result of the larger child. The larger child was created
so that if it is a leaf (that is, if it has nothing to order), its result will be the rest of the items
given to the parent. The rest of the items seen by the largest descendent of the smaller child
is the result produced by the smallest descendent of the larger child. Thus, using an approach
similar to the use of difference-lists in logic programming [11], the results of the leaf
elements are tied together to produce the result of the ordering tree.

The first input a child receives will establish the pivot for partitioning unless it is the
separator token, nil. If it is ni1 and there is more input, the child returns ni1 as the first
part of the result together with a promise for ordering the rest of its input followed by those




(DEFUN ORDER2 (input-future &optional rest-pair) )

* Future pipeline: rest and input pair (or its future) => ordered pair”
(with-values (((pivot . rest-input) input-future)) : Coerce value
(if pivot : Spawn partitioning get promises for first elements

(with-values (((smaller-future larger-future)
future (part2 pivot rest-input))))
(1et® ((ordered-targer-future : Spawsn order larger
(future (order2 larger-future rest-pair)))
(ordered-larger-pair
‘(.pivot . ,ordered-larger-future)))
;s Continue ordering smaller
{orderz smaller-future ordered-larger-pair)))
if (null! rest-input) rest-pair
*(ni1 . ,(future (order2 rest-input rest-pair))))))))

(DEFUN PARTZ (pivot input-future
“Produces (<{future> <pair>) or (<pair> <futured) for ((smaller> <larger))"
(with-values ((input-pair input-future)) : Coerce value
(it input-pair ; Destructure pair as (value . future)

(destructuring-bind (input-value . rest) input-pair
)

(if (null 1input-value) '(ni1l (nil . ,rest))
s Spawn continuation of this partitioning
(1et ((future-part (future (part2 pivot rest))))
1+ and get futures for destructured value of continuation
(et ((smaller-future
(with-values
((value future-part)) (first value)))
(larger-future
(with-values
((value future-part)) (second value))))
s Return list: (<future> <pair>) or (<pair> <future))
(if (> input-value pivot)
‘(.smaller-future
. input-value . .lar?er-future)
'((,input-value . ,smaller-future
,larger-future)))))))))

Figure 4: PIPELINED FUNCTIONAL ORDERING

values larger than anything in that input. If there is no more input, it just returns promises
for the results of its larger relatives, that is, the rest-pair.

The receipt of a separator token while partitioning indicates that all the elements of a set to
be ordered have been received. A terminator, nil, is passed to the smaller child and a
separator followed by the rest of the unordered input (if any) is passed to the larger child.

The code for this example is written assuming that each stream can only hold one value, that
is, streams are restricted to be simple futures. In the example, sequences of values are
represented by pairs consisting of a value and a future for the rest of the sequence. The value
of the future, when available, is a pair which itself consists of a value for the next element in
the sequence and a future for the rest of the sequence. The consequence of this approach is
that many short lived dynamic references are created (so that each element of the sequence has
an independent reference) and then abandoned. Reclaiming the space allocated for them
requires global synchronization as discussed in section 1.2.

Relaxation of the single value assumption for structures representing unavailable values -- as
well as extension of LAMINA to an object-oriented programming style -- is discussed in the
following section.
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3 Object Oriented Programming

In LAMINA'S object oriented programming interface, an object encapsulates related state
variables and is referenced throughout an application by that object's Se1f-Stream, a stream
(whose reference is in dynamic space) which is one of the object's state variables. Objects are
allocated in local space as described in section 1.2. To perform operations on an object,
potentially involving and modifying its state variables, a task request posting consisting of a
task selector and associated parametric values for the operation is sent fo, that is, provided as
one of the values of the self-stream for that object. Each of the task request postings that
provide the values for the self-stream of a object is taken in turn from that stream and
serviced by that object.

Task request postings are serviced atomically in the context of an object. Executions specified
by such request postings are done without visible partition with respect to other operations on
that object: operations on any given object will not be interleaved. Each operation is thus
defined to be independently atomic.

All the operations on an object done as specified by the requests are taken in turn from the
object's seif-stream. Each operation runs to completion. If an operation on an object is
preempted (due, for example, to page faulting, schedule quanta lapse, or error condition), no
other operation on that object will be started before the preempted operation is completed.
However, operations on other objects may proceed normally. A stack is maintained for each
preempted operation.

3.1 Sending a Task Request

Sending a task request in LAMINA is non-blocking and thus pipelined operations on objects are
directly accomodated. The information required to accomplish a task is either passed with the
request or is included in the state variables of the object. In an object oriented programming
style, state is localized in objects and is not referenced otherwise. Arbitrarily structured values,
however, may be sent in task request postings between lamina objects as (copied) values rather
than as references. Additionally, as is common in object oriented programming languages,
references may be sent in task request postings as well. '

The construct for asynchronously sending a task request posting to a target self-stream of an
object resembles the Zetalisp (synchronous) send construction:

(sending self-streams task-selector value lamina-keyword ...)

Multiple targets for a posting may be specified as a target list and LAMINA keywords (as listed
in figure 5) can be used to provide additional control or debugging information. For example,
the task request may be sent with a tag field that can be used as a descriptive auxiliary value
for debugging purposes.

The value immediately returned by sending is the list of clients supplied following the
LAMINA keyword "for” (or :for-effect if no clients are specified). As a convention, the
clients may expect to receive consequent task requests later in the computation.

3.2 Creating a New Stream, Ordered Stream, or Sequenced Stream

The streams that pass values between objects are created by the supplied function new-stream.
Streams may be tagged for debugging purposes by including a tag as the optional first
argument of new-stream as in (new-stream tag). The default argument, n11, will cause a
stream to inherit a tag identifying the execution in which the call to new-stream appears.

The new-stream function returns a reference for a siream created on the executing site.
Often, the reference for a stream (for example, the self-stream of an object) is passed by a
procedure as a way of telling some other procedure how the executing (or some other)
procedure expects to receive values to use or tasks to accomplish.

A stream may be thought of as an ordered queue of postings. Information can be included in
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TO, ON targets A target stream (or site) or list of targets streams (or sites) for the indicated
LAMINA operation. If no siie is provided and one is needed, an unspecified
site is chosen. Some LAMINA operations expect site targets rather than stream
targets. These are documented as they are introduced. The choice between
the alternative keywords shown is purely stylistic.

FOR clients A stream or list of streams acting as the continuation of the computation
that will be triggered by the LAMINA operation.

AS tag Arbitrary data for debugging. Defaults to the tag of the sending execution.
BY order-key A number which may be used to order information in target streams.

AFTER delay Positive number indicating the number of milliseconds that the operation
will be delayed before being attempted.

WITH properties Arbitrary data intended for user extensions of the posting protocol.

Figure 5: LAMINA KEYWORD VALUES

postings to allow them to be ordered in streams by specifying a value following the keyword
"by" in the call creating the posting. A stream ordered by increasing numeric keys can be
created by the function, ordered-stream. The function takes an optional argument for a tag:
(ordered-stream tag).

As an optimization to simplify programming and to reduce scheduling overhead (by deferring
executions involving out of order task invocations), a stream can be created that only presents
queued postings that have order keys less than or equal to the next expected order key. This
key is greater than or equal to zero and is one more than the highest order key of any
previously presented postings. Thus, in the simplest case, the presented postings will have
order keys that are in the sequence of the integers beginning with zero. The function,
saquenced-stream, that creates such streams also takes an optional argument for a tag.

Streams that have at most one value may be created by the function new-future. This
function too takes an optional argument for a fag.

3.3 Defining Objects

LAMINA object types are built upon the base flavor [9], 1amina, which defines the instance
variable, Self-Stream. The default specification is for a first-in-first-out self-stream.
Flavors intended to be mixed in to lamina, the "mixins”" ordered-self-stream and
sequenced-self-stream, are provided to override this default. As an example similar to the
one discussed in section 2, a LAMINA object to associate ordering information with the
numerical values of the elements of sets might be defined as shown in figure 6. In the
example, the state variables of an ORDER3 ordering object are all named, the default
initializations specified, and any state variables to be initialized by a creator are identified.

3.4 Triggers

Task request postings specify a task-selector, a value, and the information associated with the
keywords in the posting that originated the request. The value and other information in the
posting is formatted as a list: (value clients key tag origin properties). This list is
destructured for execution according to the trigger-pattern specified in the trigger definition.
Posting elements that are to be ignored need not be specified and an arbitrary degree of
destructuring can be specified by the trigger pattern.
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(DEFFLAVOR ORDER3 ((Controls® (ncons :controls))

Smaller-Child) (Larger-Child) Id Result-Stream)
(l1amina) .
(:initable-instance-variables Id Result-Stream)) ; TAis must be specified

(DEFTRIGGER (ORDER3 :ELEMENT) (1input)
"Set pivot or partition by established pivot. Check for completed set”
(destructuring-bind (value set-id) input
(let® ((control (send self :control set-1id))
pivot (control-pivot control)))
(1f (null pivot) (setf (control-pivot control) value)
it (>= value pivot)
sending Larger—Child :element input)
sending Smaller-Child :element input
sincf (control-smaller control;”) ; Count smaller in set
(send self :completed? control set-id)

(DEFTRIGGER (ORDER3 :END) ((base set-id expected))
"Note base and send :end to children if complete”
(let ((control (send self :control set-id)))
sot icontro -expected control) (1+ expected))
setf (control-base control) base)
send self :completed? control set-1id)))

(DEFMETHOD (ORDER3 :CONTROL) (set-1d)
"Get or create control for input and make descendants if none ever made”
(when (null Smaller-Child)
ésetq Smaller-Child (new-stream) Larger-Child (new-stream)

creating ‘Crderd '(:Self-Stream ,Smaller-Child :1Id (< .Se%f-Stream)
:Resylt-Stream ,Result-Stream))
(creating 'Orderd '(:Self-Stream ,Larger-Child :Id (>= ,Self-Stream)
:Result-Stream ,Result-Stream)))
(or (get Controls set-id) (putprop Controls (make-control) set-id)))

(DEFMETHOD (ORDER3 :COMPLETED?) (control set-id)
"Count received in set against expected and finisk off set if complete”
(let ((expected (control-expected control)))
(when (eql expected (incf (control-count control)))
(1et ((pivot (control-pivot control))
base (control-base control))
smaller (control-smaller control)))
(let ((pivot-order (+ base smaller);
larger (- expected smaller 1)))
isend1ng Result-Stream :element 'S.pivot .set-1d ,pivot-order))
let ((new-base (1+ pivat-order))
(if (plusp smaller)
sond1n? Smaller-Child :end °'(,base ,set-id ,smaller)))
(1t (plusp larger)
sending Larger-Child :end °'(.new-base ,set-id ,larger))))
(remprop Controls set-id))))))

(DEFSTRUCT (CONTROL :conc-name :named)
((pivot nil) (base nil) (expected nil) (count 0) (smaller 0)))

Figure 6: OBJECT ORDERING

sAs 8 convention, capitalized names are understood to refer to the state variables of an object.
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The syntactic form for trigger definition is modeled after the Zetalisp DEFMETHOD form:

(DEFTRIGGER (object-type trigger) trigger-pattern
documentation-string . trigger-body)

Example trigger definitions for an ordering object are shown in figure 6. Ig.eration and
assignment replace the recursion and binding used for the functional programming ordering
example shown in figure 4. Sequences of values on streams are represented by long lived
streams that couple producing and consuming ordering objects.

In the example, each :element message manipulated by the ordering routine indicates the
value of the element to be ordered and the set in which that element appears. The output
:element messages include this information together with the calculated order of the element
in the indicated set. An :end message may be generated either by the root calculation
requesting a set be ordered or by intermediate ordering objects serving that calculation. Each
such message includes a set identifier, the number of elements the receiver should expect for
that set, and the (base) order of the smallest element to be expected. The ORDER3 objects
keep track of this (and other) information for each set they are dealing with in a (disembodied
property) list of control records. The set of an input is used to retrieve the appropriate
control record from among those in use by the object.

If there is no pivot yet received to use in partitioning the set, the ordering object saves the
input value as the pivot for the set. Otherwise, the :element trigger method passes the input
element to either its larger or smaller child and counts the number of elements sent to the
smaller child. If all the expected inputs for a set have been received, an :element message
including the value, the set, and the order of the value in the set will be sent to the result
stream. An :end message will be sent to any children that have been sent elements of the set
to order.

3.5 Creating LAMINA Objects

The form (creating type initializations for client-streams on site ...) stipulates the
creation of a object on the indicated site (or on a randomly selected site if none is indicated).
When the creation has been accomplished, the client streams will receive a posting whose value
is the self-stream of the created object.

The Initializations are formed as a list alternating keywords (corresponding to the state
variable names for the object being created) with their initial values. These values are
computed in the context of the object requesting creation. As an example, creating forms
are included in the ORDER3 :control method definition shown in figure 6.

For convenience, a function, create-self-stream, is provided to create a stream which is
either an ordered stream, a sequenced stream, or a FIFO stream as appropriate for the self-
stream of the 1amina object type specified by its argument.

An example of a trigger definition to create three intercommunicating objects is shown in
figure 7. In the example, three objects each with state variables referencing the self-stream of
each of its siblings are created together. State variables of each object representing an id for
the triplet and the object that requested the creation are initialized as well.

3.6 Implicit Continuations

For LAMINA objects, continuations of a computation are often some explicit trigger method of
some explicit object. There are cases, however, in which it is inconvenient to create an explicit
name for a continuation. As a syntactic construct, execution of a continuation of a
computation can be specified to occur in the context of an executing object (as defined by its
set of state variables and the environment of the continuation) each time that postings have
been received on some given streams. The execution spawning the continuation is finished
normally and then the next operation to be done on the object is taken from its seif-stream
without delay. Thus LAMINA objects can be viewed as monitors [1] (because the independently
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(DEFTRIGGER (TRIPLICATOR :ABC:TRIPPET) (1d client)
"Expect created object to send notice of its creation”
(let ((a-stream §craate-self-straam 'ai;
)

b-stream (create-self-stream 'b
c-stream (create-self-stream 'c
(creating 'a (1ist :Self-Stream a-stream
:B b-stream :C c-stream :Id id :Parent client))
(creating 'b (1ist :Self-Stream b-stream
:A a-stream :C c-stream :Id id :Parent client))
(creating 'c (1ist :Self-Stream c-stream
:A a-stream :B b-stream :Id id :Parent client))))

Figure 7: COUPLED OBJECT CREATION

atomic operations on objects give the required mutual exclusion) but operations on them are
unnested. This is done to facilitate pipelined operation: task request postings queued for
operation on an object are not deferred for a pending continuation.

The construct (with~-postings stream-bindings form) creates an implicit continuation in the
context of an object. The stream-bindings is a list each element of which is of the form
(binding-pattern stream). [Each of the postings on the indicated streams (including the
posting clients, tag, key, origin, and properties) will be destructured and bound to a
corresponding variable (identifier) according to the associated dinding-pattern. These variables
and associated values are also part of the execution environment of the continuation.

(DEFTRIGGER (DISTRIBUTER :MAKE-ABC-SERVERS) ((count input-stream))
"Round robin distribution of input requests to created triplets of servers"
(let ((a=> (creating 'a nil for (new-stream)
on (loop repeat count collect (random-site))))
(b=> (creating 'b nil for (new-stream)
on (loop repeat count collect (random-site))))
(c=> (creating 'c nil for (new-stream)
on SIOOD repeat count collect (random-site))))
(servers (ncons nil)
(with-postings ((a a=>) (b b=>) (c c=>))
(if servers (rplacd servers (cons (1ist a b c) (cdr servers)))
ésetq sarvers (circular-1ist (1ist a b c)))
with-postings ((request input-stream))
(sending (pop servers) :request request as Self-Stream))))))

Figure 8: WITH-POSTINGS

As an example of the use of with-postings, we can consider the example shown in figure 8.
It uses nested with-postings constructs to create continuation closures that create and collect
triples of 1amina nodes and then distribute requests on an input stream to the collected triples
in a round robin fashion. Note that instance variables may be accessed by the continuations.

The implicit continuation will be executed atomically with respect to any other operations on
the indicated object and in the context of its state variables and the lexical environment in
which the form appears. A schematic of the mechanism supporting implict continuations in
objects is shown in figure 9.
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[1] References for streams on which responses are expected are sent in (task request)
postings to other objects as places to supply response postings. [2] Intermediate variables
(that is, the environment) and a pointer to a block of code required to execute the form
wrapped in a with-postings construct are captured in a continuation closure, attached to a
stream, and linked to the stream(s) onm which responses are expected. [3] When all
required postings become available on these streams, [4] the response postings together with
the closure are sent to the self-stream of the object that generated the closure.

The closure is executed (In its turn) atomically within the context of the object and lexical
environment of the form. Variable bindings are made as specified to the elements of the
available response postings. Note that the execution that spawned execution of the closure
and the execution so spawned are independently atomic. The state variables of the object and
any structures they reference can be changed by some other operation taken from the self-
stream between the two executions. The synmtactic convenience is only that: invariants that
need to be preserved across independent executions need to be met at the boundaries between
the execution that spawned execution of the closure and the execution so spawned.

Figure 9: CONTINUATION CLOSURES
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4 Shared Variables

Shared variables are dealt with in LAMINA by treating them as references whose associated value
may be mutated. A shared variable reference is constructed, accessed, and mutated by the
interface operations described in this section. Support for shared data pairs and arrays is also
described. For all these operations, execution is deferred and no other executions are

performed by the initiating processor until the indicated operation is accomplished.5

Shared queues (which are streams) are also provided. These queues are maintained in a
processor's local memory. When a process reads from a shared queue, it is halted and
descheduled: execution is resumed when the requested data arrives.

4.1 Creating and Accessing Shared Variables

A shared variable can be allocated on a specific site (containing a processor or memory
controller) and given an initial value by (shared-variable value site-reference). This
creates and returns a reference to the indicated value. The site-reference argument is optional;
if it is omitted, a randomly selected site is chosen for the default allocation. Alternatively, the
construct (in-memory site-reference forms) can be used to specify a default site for all
allocations done while executing the enclosed forms. Thus, the allocation done by the form
(in-memory site-reference (shared-variable value)) is the same as that done by the form
(shared-variable value site-reference).

Once a shared variable has been allocated, the following constructs may be used to access or
alter its value:

o (shared-read shared-variable-reference) returns the value of the reference.

o (shared-write shared-variable-reference value) modifies the value of the
reference. The new value is returned.

« (shared-exchange shared-variable-reference value) performs the same function
as shared-wr1ite, except that the prior value of the reference is returned.

For each of these constructs, the operation is guaranteed to be completed before execution is
resumed.

4.2 Shared Data Structures

LAMINA also providges suppost for pairs or arrays of shared variables. A structure reference is
created by an executing process, which may then initialize the structure. The site for the
allocation is specified by an optional site-reference argument, by the innermost (dynamically)
enclosing in-memory form, or is chosen at random.

A shared pair is created by (shared-cons car-value cdr-value site-reference). The
accessors for a shared pair are shared-car and shared-cdr. Pairs are altered with the forms
(shared-rplaca shared-pair new-car) and (shared-rplacd shared-pair new-cdr). Also,
the form (cache-shared-pair shared-pair-reference) may be used to make a local, that is,
non-shared, copy of a shared pair.

The (shared-array dimensions site-reference) form returns a reference to a shared array.
The dimensions argument is a list of positive integers, denoting the size of each dimension of
the array. There are optional :initial-element and :initial-contents keyword
arguments, which may be used (respectively) to initialize all the elements of the array to the
single value specified or to initialize each element of the array to the value of the

6Notz that, because the simulator is executing in a uniprocessor environment, a stack group must be maintained for
each deferred execution. Thus executions must be resumable (not merely restartable) to use the shared variable LAMINA
interface described below. This is discussed in section 1.10.
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(DEFUN SHARED-BUFFER (size)
(1et ((<signal> (shared-queue)) (empty? t)
<lock> (shared-variable t))
<buffer> (shared-array size :initial-element nil))
<head> (shared-variable 0
<tail> (shared-variable 0)))
#'(1ambda (operation &optional value)
(selectq operation
(:1nsert
(with-spin-Tock <lock>
(1et* ((head (shared-read <head>
tail (shared-road <tail>
new-tail (mod (1+ tail) size)))
(when (not (= head new-tail)
shared-aset value <buffer> tail)
when empty?
(setq empty? n1l1) (shared-enqueue <signal> <{signald))
(shared-write <taild> new-tail)))))
(:remove
(with-spin-lock <lock>
(et ((head (shared-read <head>
tail (shared-read <taild)))
(ir inot i- head tail))
let ((new-head (mod (1+ head) size)))
shared-write <head> new-head)
shared-aref <bufferd> head))
(when (not empty?)
(setq empty? t) (shared-dequeue <signal>))))))))))

Figure 10: SHARED BUFFER

corresponding element in a list or a list of lists. Shared arrays are initialized to nil by
default.

The form (shared-aref shared-array-reference subscript ...) reads elements of the shared
array. The number of the subscripts supplied must agree with the dimension of the array.
The form (shared-aset value shared-array-reference subscript ...) may be used to write
array elements. The cache-shared-array function returns a local (non-shared) copy of the
shared array reference it is applied to, and the fi11-shared-array function copies data from
a non-shared array into a shared array.

4.3 Shared Queues

A shared queue construct, which is implemented as a LAMINA stream, is also provided. Because
queues are streams, the creator of the queue provides atomic access to the queue and when the
queue is empty, maintains a FIFO queue of processes requesting data -- the requests are
serviced when data is added to the queue. Further, whenever a process attempts to remove data

from the queue, the process is descheduled; execution is rescheduled when the requested data
arrives.

Shared queues are created by the shared-queue function, which takes one optional argument
representing the queue'’s tag, which may be used for debugging. Items may be added to the
queue with the shared-enqueue function. The shared-dequeue function removes and

returns the top item of the queue, while the shared-queue-top function merely returns it.” A
shared-queue-p function is also provided to test whether an item is a shared queue.

Tn the current implementation, only FIFO queues are provided, and (in order to maintain a consistent timing model
for cross address space transmissions) only shared variable or shared queue references may be placed on a sh queue.
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DEFUN PART4 (<array> first last)
¢ " Does mo.(. on arryqv, and returns position of pivot — algorithm from [7.]"
(let épivot (shared-aref <array> f1rst);
i1 first) i{ (1+ last)) (left-item (right-item)
oop for ni from (1+ i) until (= ni j
do (setq left-item (shared-aref <array> ni))
when (>= left-item pivot) return ni
finally (return ni))
for j = (loop for nj downfrom (1- j) until (< nj (-1 i))
do (setq right-item (shared-aref <array> nj))
when s<- right-item pivot) return nj
finally (return nj)))
it (> j 1) do (shared-aset left-item <array> j)
shared-aset right-item <array> 1)

(loop for {1 =

else do (shared-aset right-item <array> first)
shared-aset pivot <array> j) and return j))

(DEFUN MAYBE-EXCHANGE (<array> first second)
"Exchanges first and second items, iff first is greater.”
(Tet ((first-item (shared-aref <array> first))
second-item (shared-aref <array> second)))
(when (> first-item second-item)
shared-aset saecond-item <array> first
shared-aset first-item <array> second))))

Figure 11: SHARED VARIABLE PARTITION & EXCHANGE

Unlike other shared variable operations, accesses to shared queues do not cause the initiating
processor to stall waiting for completion. A process executing shared-enqueue continues
immediately, without waiting for the data to arrive on the queue. A process which accesses a
queue, using shared-dequeue or shared-queue-top, will be halted and descheduled.
Execution is rescheduled when the data arrives, but the initiating processor may perform other
executions in the meantime.

4.4 Other Synchronization

A simple spin lock is provided for busy-wait synchronization in the LAMINA shared variable
interface. The form (with-spin-lock shared-variable-reference form) executes the given
form after aquiring the lock specified by the indicated shared variable reference. Subsequently,
the lock is released and the value produced by the execution of the form is returned. The lock
must be a reference to a shared variable that was initialized to a value other than n1i1l.

We might use such a synchronization operator in incrementing a shared counter as:

(DEFUN LOCKED-INCREMENT (<var>® <(lock> &optional (delta 1))
(with-spin-lock <lock>
(1et®* ((value (shared-read (var);; (new-value (+ value delta)))
(shared-write <var> new-value))))

We can also create locks based on the shared queue construct. For example, we implement a
mutual exclusion lock as a shared queue. To release the lock, a process places a token
reference on the queue. A process acquires the lock by removing the token -- any other
process which attempts to remove it will be blocked until the owner of the lock replaces the
token. Alternatively, reading but not removing the token (by using shared-queue-top) allows

8By convention, we denote references to shared variables and shared queues by enclosing angle brackets, as in
<lock)>.
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(DEFUN ORDER4 (<threads)> <lock> requests results &optional request)
(destructuring-bind (<array> first last) request
(if <array>
(let® (ipivot-position part4 <array> first last))
contents (1ist (shared-aref <array> pivot-position)
pivot-position <array))))
(funcall : Order of pivot data element is established
results :insert (shared-array 3 :initial-contents contents))
(let ((left-diff (- pivot-position first ;
right-diff (- last pivot-position)))
(1et ((order-left (> left-diff 2))
( dordar-r‘lght (> right-dirr 2)))
con
((and order-left order-right) :Order right partition
let® ((request
(1ist <array> first (1- pivot-position)))
(request-block
(shared-array 3 :initial-contents request)))
(when (null (funcall requests :insert request-block};
(order4 <{threads> <lock> re-uests results request
(orderd4 <threads> <lock)> requests results
(11st <array> (1+ pivot-position) last))))
(order-left : Exchange right and then order left
(when (= right-diff 2)
(maybe-exchange <array> (1- last) last))
(order4 <{threads> <lock)> requests results
(1ist <array> first (1- pivot-position))))
(order-right + Exchange left and then order right
(when (= left-diff 2)
(maybe-exchange <array> first (1+ first)))
(order4 (threads> <lock> requests results
(11st <array> (1+ pivot-position) last)))
(:e1se : Order by exhange for both left and right
(when (= right-diff 2)
(maybe-exchange <array> (1- last) last))
(when (= left-diff 2)
(maybe-exchange <array> first (1+ first)))
: s Declare completion of ordering request and try again
locked-increment {(threads> <{lock> -1
order4 {threads> <lock> requests results))))))
(1et ((<request> (funcall requests :remove)
(if (shared-queue-p <request>) 1 If buffer was empty...
(if izorop (shared-read <threads)>)) : signal termination
shared-enqueue <request> <request))
ishared-quoue-top <request>) :  or block till signalled
order4 {threads> <lock> requests results))

ilockod-incromnt <threads> <lock>) ;Eise, pick up reguest
let ((request (listarray (cache-shared-array <roquest>g;;)
(order4 <{threads> <lock> requests results request))))

Figure 12: SHARED VARIABLE ORDERING
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more than one process to be resumed. This last approach more closely resembles the type of
synchronization provided by signalling and waiting on condition variables in a monitor.

Figure 10 shows an example of using some of these synchronization schemes in generating a
closure to perform operations on a shared buffer realized as a shared variable array. Processes
first gain access to the shared array by spinning on a lock. Once access is granted, items are
inserted or removed. An attempt to put information in a full buffer returns ni1 if it is
unsuccessful. When an attempt is made to remove data from an empty buffer, a shared queue
(rather than data) is returned -- the requesting process may then wait for something to be
placed on this queue by executing shared-queue-top.

4.5 An Example

As an example of using the LAMINA shared variable interface, we present yet another
implementation of ordering, this one using shared variables. The sets to be ordered are
represented as shared arrays.

Each processor will execute an identical thread of execution. The execution of the thread is
defined by the order4 function, shown in figure 12. Ordering requests are distributed to the
threads through a shared buffer manipulated by a closure previously formed by calling the
shared-buffer function. A request consists of a reference to a shared array and indices
representing the left and right boundaries of the array (or sub-array) to be ordered. Each
thread executes in a loop as follows:

o If there is an array (or sub-array) to order, the thread partitions the sub-array,
using the part4 routine, shown in figure 11. The order of the set element used as
the pivot is now established so the set element, its order, and the reference for the
array (as a set idencifier) is placed in the specified result queue.

o If both sub-arrays resuiting from the partition are longer than two elements, the
thread adds an ordering request to the queue for one sub-array and orders the other.
If either sub-array has two or fewer elements, the ordering is trivial, so the thread
does it (using the maybe-exchange function, also shown in figure 11). If neither
sub-array has mcre than two elements, after the thread orders the sub-arrays, it
signals that one less thread is currently working on any ordering requests and notes
that it has no array to order.

« If the thread has no array to order, it attempts to remove a request from the queue.
If successful, it signalis that one more thread is trying to do ordering and orders the
(sub-)array identified by the request. If the attempt is unsucessful and there are no
other working threads, there will never be any more requests generated so the thread
terminates. Otherwise, it tries again to remove a request from the queue. Note that
the first thread to terminate places a token on the shared synchronization queue
-- this wakes up the other threads, which will then terminate.




§ Utilities: Random Sites, Local Sites, Dismiss, and Boot

A few utility operations are provided by LAMINA to specify computation (and storage) sites,
dismiss computations, and provide a timeout facility for applications desiring one. LAMINA
also provides simulation control facilities to initiate a CARE simulation, read the current
simulation time, and do a computation without increasing the simulation time.

The function random-site returns a reference for a site chosen randomly with uniform
distribution over the processor sites in the simulated system. The function random-memory
does the same thing over the memory controllers in the system. The function local-site
returns a reference for the CARE site executing the function. The function local-memory
returns a reference for a memory controller associated with the processor on which the
function is executed.

In order to provide a timeout facility, the keyword after followed by a number of
milliseconds in simulated time may be included in functions that take LAMINA keyword
arguments. The simplest use might be to specify that a posting to a stream be sent at some
future time.

A call to dismiss breaks execution. With no argument, execution is rescheduled immediately
(but occurs after all previously scheduled executions are run). If an argument is specified
which is a keyword, execution is terminated and will never be rescheduled. If a local stream is
specified, execution is rescheduled when next that stream receives a posting -- or immediately,
if that stream has a posting on it.

The current simulation time (in milliseconds) is returned by the function simulation-time.

Some computations in a simulated application need not (or should not) be timed. The macro
(without-clock form) enclosing the forms of such computations will cause them to be
accomplished "off the clock”. This is generally a good idea for calls to debuggers and the like
as well as for input-output operations.

Something special must be done to start up a simulation. The form
(boot (at rime site-coordinates form) (at ...... ))

will spawn computations to execute forms at the indicated sites beginning at the specified
times (in milliseconds). The site coordinates are given as a list, for example, ' (3 2), whose
length matches the represented dimensionality of the processing unit (a surface for the case
shown). The boot construct resets the simulator and thus may only be executed as the first
operation of an application being simulated.

CARE user applications should be loaded into the Zetalisp care-user package where all
LAMINA interface constructs and primitive functions are defined.
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I. LAMINA Primitives

A set of functional primitives underlies the interface syntax described in the previous sections
of this paper. The set of primitives described below has evolved to provide the mechanisms to
support all that syntax. It is documented here so that language implementers may more easily
define additional or alternative syntax.

I.1 Posting and Target Specialization

Streams acquire values as a result of postings received by them. This is directly done by the
posting operation as in (posting value to target-streams ...). A posting may be
multicast [3] by supplying a list of target-streams.

CARE provides a facility for specializing the values transmitted in a multicast to the individual
targets of the message. Anyplace a stream is used as a target of a posting, it may be replaced
by a cons of that stream and the value specialization for that stream. The value specialization
will be used with the value of the posting to form a list whose elements are the list elements
of the specialization (or the specificatic itself if it is not a list) followed by the list elements
of the posting value (or the posting value itself if it is not a list). This combined list will be
taken as the value of the posting when it arrives at the target stream. The simplest use of this
may be to multicast some data to two remote LAMINA nodes as described in section 3, asking
them to perform two different operations on the data:
(posting data to '((.input-stream-1 . ,task-selector-1)
(.input-stream-2 . ,task-selector-2)) ...)

Specialization is specified by a list of lists even if only one target is involved. This is
required to distinguish it from a list of unspecialized targets.

I.2 Stream Posting Access Functions

The form (first-posting stream) returns the first posting of those present on a stream.
The form (next-posting stream) does the same but removes the posting from the stream.

The form (last-posting stream) returns the last posting and eliminates all others on the
stream.

If the stream is empty, the three stream posting access functions, just listed, return nil.
Otherwise, they return a posting as a list of the value, clients, key, tag, origin, and properties
of the posting in that order. This list may be used with Lisp destructuring operators.
Elements of this list may also be accessed by the posting- macros: -value, -clients, -key,
-tag, -origin, and -properties. Each of these takes a posting as an argument. The
number of postings available on a stream is returned by the form (postings stream).

If it is desired that execution be blocked until there is a posting for a specified stream, the
stream posting access forms above may be wrapped in an (accept ...) construction, for
example, (accept (next-posting stream)). When a posting is available on the indicated
stream, the posting is returned to the restarted or resumed execution.

1.3 Copying Streams

A posting sent to parent streams in a tree (or graph) of streams set up by copying operations
will result in that posting also appearing on all the descendant streams in the tree (or graph).
Such a system of streams can be built by:

(copying parents to child-streams for clients ...)
The references for the child-streams are sent in an operation request posting to the parents
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where they are added to the child references of the parent. The current queue of postings held
in the parent stream is copied and returned in one combined posting that is multicast to the
child streams. These postings become part of each child stream. When each chiid receives the
combined postings, it sends on to the clients a completion posting whose value is the parent
stream from which it received the posting queue. This can be used to validate that a requested
copy operation has been accomplished.

1.4 Linking Streams

Linking is an optimization of copying for those cases where it is known that postings need
not be retained on intermediate streams in a system of linked streams. Linking parent
streams to child streams serves to restrict the parents to act only as intermediaries in a system
of linked streams. The syntax for 1inking is:

(1inking parents to child-streams for clients ...)

The references for the child-streams are multicast in an operation request posting to the
parents. When a parent receives the references, any postings already on parent streams are sent
to the children specified by the references and eliminated from the parents. Further postings
are not retained on parents after they receive a 1inking directive but are immediately passed
on to the child streams. For efficiency in forwarding, the implementation may bypass
intermediate levels in a system of linked streams.

I.S Value Specialization

Target specialization may also be used with the 1inking or copying operator to specialize the
value of postings transmitted from parents to children:

(V1inking parents to '((.child-1 . ,value-specialization-1)) ...)

Thereafter, all postings that traverse that link from parent to child will have the appropriate
value specialization prepended to their value. The resulting value is a list whose elements are
the list elements of the value specialization (or the value specialization itself if it is not a list)
and the list elements of the posting value (or the posting value itself if it is not a list). This
is the mechanism used to support the syntax of with-postings when a continuation closure
with associated response posting are to be put on a the self-stream of an object.

1.6 Relocating Streams

A 1inking operation does not change the way that a child stream orders postings or presents
them. Relocating a stream from one site to another with that stream’'s means of ordering and
presenting postings (together with any accumulated postings) is specified by:

(relocating parents to child-streams for clients ...)

This is used when there is an attempt to read from a stream that is not local to a site. The
attempt causes the reference used to specify that the target stream target a new child stream,
the relocation of the previously specified target. No change can be detected in the operation
of reference-eq on the reference after relocation.

.7 Group Streams

An application in LAMINA may wish to view a group of streams as a composite, a groap-stream,
carrying out some operation when all of the streams in the group have received a posting. To
minimize unproductive scheduling, computations may wait on such stream composites rather
than the individual streams. Group-streams are created by new-stream called with a :group
keyword argument as in: (new-stream tag :group member-streams). A future, that is a stream
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which may have at most one value, may be a member of many groups but otherwise a stream
may be the member of only one group. If such streams of values are to be made gvanlable to
several groups, a system of linked or copied streams can be created as discussed previously.

If a member stream is not local to the site of its group stream, a local member stream is
created and the remote member stream is relocated there. The postings sent to the local
member streams are taken from the member streams whenever a request that has been made to
accept a posting from a group stream can be satisfied. Each posting available from a group
stream will contain a list of postings received by its component streams as its value.

The order of posting elements in the list representing a group stream posting will correspond
to the order indicated in specifying the component streams of the group stream when it was
formed by calling the function new-stream as shown above.

Group streams are used to implement with-postings constructs. Continuations are only
scheduled when values are available on aill the streams included in the specified stream
bindings.

I.8 Accessing and Exchanging Stream Values

Posting-by-posting access of the information on streams may be accomplished by requesting
that a stream access function be applied to the streams at the site they exist on:

(accessing access-function on target-streams for client-streams ...)

The access-function may be any of the stream posting access functions, for example, the
function next-posting described previously. A posting will be sent to the client streams
when one is available on a target stream. This is the only way provided for expressing
competitive access to a common stream.

An interlocked operation on streams is provided:
(exchanging value on target-streams for client-streams ...)

This causes last-posting to be applied to each target stream and the result seat to each
client stream. The value replaces the last posting on the target stream. This is done
atomically with applying last-posting to the stream.

1.9 Spawning a Restartable Computation

A separate, concurrent computation is created by spawning the execution of a closure as shown
in the following example:

(spawning #'(lambda () form) on site-reference for clients ...)

The closure is formed and the clients returned immediately as the value of the spawning
operation. The closure will sent to the indicated site and eventually executed there. The result
of that execution will be returned to the specified client streams.

Spawned computations can block waiting for a value to be available on a stream. When the
value is available they will be restarted and any intermediate computations done previously will
be redone. This approach is taken to avoid creation of stack groups for every spawned
computation. Resumable (as opposed to restartable) computations with their own stack groups
can be created by LAMINA operations discussed in section 1.10.

As an alternative to mounting computations with their own stack groups, the continuations of
partially completed computations can be spawned on the same site as their parent. This is
done by the with-values functional programming interface constructs described in section
2 and by the with-postings object-oriented programming interface constructs described in
section 3.6.
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1.10 Mounting Executions with Stack Groups

If an execution is blocked on trying to accept something from an empty stream, it is either
restarted (as discussed above) or resumed when that stream receives a posting. In general,
resuming a computation from where it left off (without spawning continuations) requires
preserving indeterminate amounts of intermediate state with a stack group. Maintaining many
independent stack groups is certainly an expensive operation in simulation and may also be so
in a target system implementation.

However, for occasions when the full power and expense of stack group switching is warranted,
LAMINA provides a construct in the same format as spawning:

(mounting closure on site-references for clients...)

The clients are returned immediately. The closure is sent to the specified site(s) where it will
be applied and the computed result sent to the clients. Note that the boot operation discussed
in section 5 spawns rather than mounts a computation. If a mounted computation is needed, it
must be explicitly mounted by the computation that boot spawns.

One could implement a multiple fork and join construct (like cobegin ... coend) by
mounting a number of processes with a common client stream. The creator could then wait
for the appropriate number of responses on the client stream (to insure that the other
processes had completed) and then continue its execution.

In applications that wish to view executions created with mounting as non-terminating, the
execution will typically have an initial section that sends a reference for a newly created (task)
stream to mutually agreed upon streams (by an explicit posting). The referenced task stream
will then be used to supply the newly mounted execution with additional operations to perform
after it completes its starting procedures.

I.11 Loading Sites and Passing Arguments to Remote Closures

An item may be sent to a remote site, a reference for it created there, and the reference sent
to specified clients:

(loading item on site-reference for client-streams ...)

The client-streams are returned immediately by the form. Remote closures may be created by
Toading closures:

(loading #'(1ambda arglist form) on site-reference for (new-stream) ...)

The new stream immediately returned will eventually get a value representing a reference for
the closure on the specified site. A remote closure may be applied to locally evaluated
arguments by passing it those arguments:

(passing arglist to closure~reference tor clients ...)

The result of the remote application is sent to the specified clients. The loading and
passing operations are combined in spawning.
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II. LAMINA Primitives and Interfaces

LAMINA primitive and interface functions are listed in this appendix with a reference to the
section or sections in which they are described and discussed.

II.1 References

13
13
13

REFERENCE item Function
REFERENCE-SITE reference Function
REFERENCE-EQ referencel reference2 Function

I1.2 Functional Programming Interface

2
2

FUTURE form Macro

WITH-VALUES future-bindings &body forms Macro
The future-bindings is a list each element of which is itself a list:
(binding-pattern future-specifier).

II.3 Object Oriented Programming Interface

31
32,17
32
3.2
32
33
33
34

35
3.5

36

SENDING self-streams task-selector value &rest lamina-keywords Function
NEW-STREAM &optional tag &key group member-streams Function
NEW-FUTURE &optional tag Function
ORDERED-STREAM &optional rag Function
SEQUENCED-STREAM &optional trag Function
LAMINA, ORDERED-SELF-STREAM, and SEQUENCED-SELF-STREAM Flavors
SELF-STREAM of LAMINA Instance Variable
DEFTRIGGER (object-type task-selector) trigger-pattern Macro

&optional documentation-string &body forms
The trigger pattern destructures the list (value clients key tag origin properties).

CREATE-SELF-STREAM object-type &optional tag Function

CREATING object-type state-variable-settings &rest lamina-keywords Function
State-variable-settings is a list alternating (state-variable) keywords and values.

WITH-POSTINGS stream-bindings &body forms Macro
The stream-bindings is a list each element of which is itself a list:
(binding-pattern stream-specifier).
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I1.4 Shared Variable Interface

41
41
4.1
41
41
42
42
42
42
42
4.2
42

42
4.2
42
42
43
4.3
43
4.3
4.3
44

SHARED-VARIABLE site-reference value

IN-MEMORY site &body forms

SHARED-READ shared-variable-reference
SHARED-WRITE value shared-variable-reference
SHARED-EXCHANGE value shared-variable-reference
SHARED-CONS car-value cdr-value &optional site-reference
SHARED-CAR shared-pair-reference

SHARED-CDR shared-pair-reference

SHARED-RPLACA shared-pair-reference new-car
SHARED-RPLACD shared-pair-reference new-cdr
CACHE-SHARED-PAIR shared-pair-reference
SHARED-ARRAY dimensions &optional site-reference

Function

Macro
Function
Function
Function
Function
Function
Function
Function
Function
Function

Function

&key :initial-element value :initial-contents value-sequences

SHARED-AREF shared-array-reference &rest subscripts
SHARED-ASET value shared-array-reference &rest subscripts
CACHE-SHARED-ARRAY shared-array-reference
FILL-SHARED-ARRAY array shared-array-reference
SHARED-QUEUE tag

SHARED-ENQUEUE reference shared-queue-reference
SHARED-DEQUEUE shared-queue-reference |
SHARED-QUEUE-TOP shared-queue-reference
SHARED-QUEUE-P item

WITH-SPIN-LOCK shared-variable-reference &body form
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IL.S Utility Operations

5

WM W i W

RANDOM-SITE and RANDOM-MEMORY Functions
LOCAL-MEMORY and LOCAL-SITE Functions
DISMISS &optional stream-or-keyword Function
SIMULATION-TIME Function
WITHOUT-CLOCK &body forms Macro
BOOT &rest art-forms Macro

An at-form is a list of the form: (at time site-coordinates &body forms)

I1.6 Primitives

11
1.2
L2
12
1.2
1.2
1.2
1.2
12
1.2
1.2
1.2
13
14, 15
1.6
18
1.8
1.9
1.10
L11
.11

POSTING value &rest lamina-keywords Function
POSTINGS stream Function
FIRST-POSTING local-stream , Function
NEXT-POSTING local-stream Function
LAST-POSTING local-stream Function
POSTING-VALUE posting ' Function
POSTING-CLIENTS posting Function
POSTING-KEY posting Function
POSTING-TAG posting Function
POSTING-ORIGIN posting Function
POSTING-PROPERTIES posting Function
ACCEPT stream-access-form Macro
COPYING parent-streams &rest lamina-keywords Function
LINKING parent-streams &rest lamina-keywords Function
RELOCATING parent-streams &rest lamina-keywords Function
ACCESSING access-function &rest lamina-keywords Function
EXCHANGING value &rest lamina-keywords | Function
SPAWNING function &rest lamina-keywords Function
MOUNTING function &rest lamina-keywords Function
LOADING item &rest lamina-keywords Function
PASSING arglist &rest lamina-keywords Function
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Abstract

This paper documents the results we obtained and the lessons we leamed in the
design, implementation, and execution of a simnulated real-time application on a simulated
parallel processor. Specifically, our parallel program ran 100 times faster on a 100-
processor multiprocessor compared to a 1-processor multiprocessor.

The machine architecture is a distributed-memory multiprocessor. The target
machine consists of 10 to 1000 processors, but because of simulator limitations, we ran
simulations of machines consisting of 1 to 100 processors. Each processor is a computer
with its own local memory, executing an independent instruction stream. There is no
global si.ared memory; all processes communicate by message passing. The target
programuuing eavironment, called Lamina, encourages a programming style that stresses
performance gains through problem decomposition, allowing many processors to be
brought to bear on a problem. The key is to distribute the processing load over replicated
objects, and to increase throughput by building pipelined sequences of objects that handle
stages of problem solving.

We focused on a knowledge-based application that simulates real-time
understanding of radar tracks, called Airtrac. This paper describes a portion of the Airtrac
application implemented in Lamina and a set of experiments that we performed. We
confirmed the following hypotheses: 1) Performance of our concurrent program improves
with additional processors, and thereby attains a significant level of speedup. 2)
Correctness of our concurrent program can be maintained despite a high degree of problem
decomposition and highly overioaded input data conditions.
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1. Introduction

This paper focuses on the problems confronting the programmer of a concurrent
program that runs on a distributed memory multiprocessor. The primary objective of our
experiments is to obtain speedup from parallelism without compromising correctness.
Specifically, our parallel program ran 100 times faster on a 100-processor multiprocessor
compared to a 1-processor multiprocessor. The goal of this paper is to explain why we
made certain design choices and how those choices influence our result.

A major theme in our work is the tradeoff between speedup and correctness. We
attempt to obtain speedup by decomposing our problem to allow many sub-problems to be
solved concurrently. This requires deciding how to partition the data structures and
procedures for concurrent execution. We take care in decomposing our problem; to a first
approximation, more decomposition allows more concurrency and therefore greater
speedup. At the same time, decomposition increases the interactions and dependencies
between the sub-problems and makes the task of obtaining a correct solution more difficult.

This paper focuses on the implementation of a knowledge-based expert system in a
concurrent object-oriented programming paradigm called Lamina [Delagi 87a]. The target
is a distributed-memory machine consisting of 10 to 1000 processors, but because of
stmulator limitations, our simulations examine 1 to 100 processors. Each processor is a
computer with a local memory and an independent instruction stream.! There is no global
shared memory of any kind.

Airtrac is a knowledge-based application that simulate< real-time understanding of
radar tracks. This paper describes a portion of the Airtrac application implemented in
Lamina and a set of experiments that we performed. We encoded and implemented the
knowledge from the domain of real-time radar track interpretation for execution on a
distributed-memory message-passing multiprocessor system. Our goal was to achieve a
significant level of problem-solving speedup by techniques that exploited both the
charactenistics of our simulated paraliel machine, as well as the parallelism available in our
problem domain.

The remainder of this paper is organized as follows. Section 2 introduces
definitions that we use throughout the paper. Section 3 describes the model of the parallel
machine that we simulate, and the model of computation from the viewpoint of the
programmer. Section 4 outlines a set of principles that we follow in our programming
effort in order to shed light on why we take the approach that we do. Section 5 describes
the signal understanding problem that our parallel program addresses. Secton 6 describes
the design of our experiments, and Section 7 presents the results. Section 8 discusses a
number of design issues, and Section 9 summarizes the paper.

LEach processor is roughly comparable to a 32-bit microprocessor-based system equipped with a
multitasking kernel that supponts iaterprocessor communicaton and restartable processes (as opposed to
resumable processes). The hardware system is assumed to support high-bandwidth, low-latency inter-
processor communications as described in Byrd et.al. [Byrd 87].
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2. Definitions

Using the definitions of Andrews and Schneider [Andrews 83], a sequential
program specifies sequential execution of a list of statements; its execution is called a
process. A concurrent program specifies two or more sequential programs that may be
executed concurrently as parallel processes.

T

We define Sy, speedup as the ratio 'Tﬁ where Tk denotes the time for a given
n
task to be completed on a k-processor multiprocessor. Both Tm and Tn represent the same

concurrent program running on m-processor and n-processor multiprocessors,

respectively.  When we compare an n-processor multiprocessor to a l-processor

multiprocessor, we obtain a measure for Sp/1 speedup, which should be distunguished
»

from true speedup, defined as the ratio ;— where T* denotes the time for a given task to
n

completed by the best implementation possible on a uniprocessor.2 In particular, T*

excludes overhead tasks (e.g. message-pa- sing, synchronization, etc.) that 'I'1 counts.

We define correctness to be the degree to which a concurrent program executing on
a k-processor multiprocessor obtains the same solution as a conventional uniprocessor-
based sequential program embodying the same knowledge as contained in the concurrent
program. We call the larter solution a reference solution. We use a serial version of our
system to generate a reference solution, to evaluate the correctmess of the parallel
implementation.3

MacLennan [MacLennan 82] distinguishes between value-oriented and object-
oriented programming styles. A value has the following proper:ies:

* A value is read-only.
« A value is atemporal (i.c. imeless and unchanging).

» A value exhibits referential transparency, that is, there is never the danger of one
expression altering something used by another expressioi:,

These properties make values extremely attractive for concurrent programs. Values
are immutable and may be read by many processes, either directly or through “.opies” of
values that are equal; this racilitates the achievement of correctness as well as concurrency.
A well-known example of value-oriented programming is functional programming
(Henderson 80]. Other examples of value-oriented programming in the realm of parallel
computing include systolic progr-ns [Kung 82] and scalar data flow programs [Arvind 83,
Dennis 85]. where the data flowing from processor to processor may be viewed as values
that represent abstracuons of vanous intermediate problem-solving stages.

LN 1-processor multiprocessor executes the same parallel program that runs on a n-processor
muldprocessor. In parucular. it creates processes that communicate by sending messages. as opposed to
shanng a common memory.

3Unfortunately. our reference program is oot a valid producer of T* estimates, and we cannot use it

to obtain true speedup estimates. Project resource limitations prevented us from developing an optimized
program to serve as a best serial implementaton.
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In contrast, MacLennan defines objects in computer programming to have one or
more of the following properues:

« An object may be created and destroyed.
 An object has state.

« An object may be changed.

+ An object may be shared.

Computer programs often simulate some physical or logical situation, where objects
represent the entities in the simulated domain. For example, a record in an employee
database corresponds to an employee. An enty in a symbol table corresponds to a variabie
in the source text of a program. Variables in most high-level programming languages
represent ~bjects. Objects provide an abstraction of the state of physical or logical entities,
and refle. . changes that those entities undergo during the simulation. These properties
make objects parucularly useful and artractive to a programmer.

Objects in a concurrent program introduce complications. In particular, many
parallel processes may attempt to create, deswoy, change, or share an object, thereby
causing potential problems. For instance, one process may read an object, perform a
computation, and change the object. Another process may concurrently perform a similar
sequence of actions on the same object, leading to the possibility that operations may
interleave, and render the state of the object inconsistent. Many solutions have been
proposed, including semaphores, conditional critical regions. and monitors; all of these
techniques strive to achieve correctness and involve some loss «f concurrency.

Our programming paradigm, Lamina. supports a variation of monitors, defined as a
collection of permanent variables (we use the term instance variables), used to store a
resource s state, and some procedures, which implement a set of allowed operations on the
resource [Andrews 83]. Although monitors provide mutual exclusion, concurrency
considerations force us to abandon mutual exclusion as the sole technique to obtain
correctess.

We classify techniques for obtaining speedup in problem-solving into two
categories: replication and pipelining. Replication is defined as the decomposition of a
problem or sub-problem into many independent or partially independent sub-problems that
may be concurrendy processed. Pipelining is defined as the decomposition of a problem or
sub-problem into a sequence of operations that may be performed by successive stages of a
processing pipeline. The output of one stage is the input to the next stage.

3. Computational model

3.1. Machine model

Our machine architecture, referred to as CARE [Delagi 87a}, may be modeled as an
asynchronous message-passing distributed system with reliable datagram service
[Tanenbaum 81). After sending a message, a process may continue to execute (1.e.
message passing is asynchronous). Arrival order of messages may differ from the order in
which they were sent (i.e. datagram as opposed to virtual circuit). The network guarantees
that no message is ever lost (i.e. reli: ble), although it does not guarantee when a message
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will arrive. Each processor within the distributed system is a computer that supports
interprocessor communication and restartable processes. Each processor operates on its
own instruction stream, asynchronously with respect to other processors.

In synchronous message passing, maintaining consistent state between
communicating processes is simplified because the sender blocks until the message is
received, giving implicit synchronization at the send and receive points. For example, the
receiver may correctly make inferences about the sender’s program state from the contents
of the message it has received, without the possibility that the sender program continued to
execute, possibly negating a condition that held at the time the original message was sent.

In asynchronous message passing, the sender continues to execute after sending a
message. This has the advantage of introducing more concurrency, wnich holds the
promise of additional speedup. Unfortunateiy, in its pure form, asynchronous message
passing allows the sender o get arbitrarily far ahead of the receiver. This means that the
contents of the message reflects the state of the sender at the time the message was sent,
which may not necessarily be true at the time the message is received. This consideration
makes the maintenance of consistent state across processes difficult, and is discussed more
fully in Secton 4.

3.2. Programmer model

Our programming paradigm, Lamina, provides language constructs that allows us
to exploit the distributed memory machine architecture described earlier [Delagi 87b]. In
particular, we focused our programming efforts on the concurrent object-oriented pro-
gramming model that Lamina provides. As in other object-oriented programming systems,
objects encapsulate state information as instance variables. Instance variables may be
accessed and manipulated only through methods. Methods are invoked by message-
passing.

However, despite the apparent similarity with conventional object-oriented systems,
programmmung within Lamina has fundamental differences:

+ Concurrent processes may execute during both object creation and message
sending.

* The ume required to create an object is visible to the programmer.
* The time required to send a message is visible to the programmer.
* Messages may be received in a different order from which they were sent.

These differences reflect the scrong emphasis Lamina places on concurrency. While
all object-oriented systems encounter delays in object creation and message sending, these
delays are significant within the Lamina paradigm because of the other activities that may
proceed concurrently during these periods. Subtle and not-so-subtle problems become
apparent when concurrent processes communicate, whether to send a message or to create a
new object. For instance, a process might detect that a particular condition holds, and
respond by sending a message to another process. But because processes continue to
execute during message sending, the condition may no longer hold when the message is
received. This example illustrates a situation where the recipient of the message cannot
correctly assume that because the sender responds to a particular condition by sending a
message, that the condition still holds when the message is received.
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Regarding message ordering, partly as a result of our experimentation, versions of
Lamina subsequent to the one we used provide the ability for the programmer to specify
that messages be handled by the receiver in the same order that they were sent [Delagi 87¢].
Use of this feature imposes a performance penalty, which places a responsibility on the
programmer to determine that message ordering is tru@y wa.rra.ptcd. In the Am;ac
apolication, we believed that ordering was necessary and imposed it through application
level routines that examined message sequence numbers (time tags) and queued messages
for which all predecessors had not already been handled.

In Lamina, an object is a process. Following the definition of a process provided
earlier, we make no commitrment to whether a process has a unique virtual address space
associated with it. Each object has a top-level dispatch process that accepts incoming
messages and invokes the appropriate message handler; otherwise, if there is no available
message, the process blocks. Sending a message to an object corresponds to
asynchronous message-passing at the mi.chine level. A method executes atomically. Since
each object has a single process, and only that process has access to the internal state
(instance variables), mutual exclusion is assured. An object and its methods effectively
constitute a non-nested monitor.

Our problem-solving approach has evolved from the blackboard model, where
nodes on the blackboard form the basic data objects, and knowledge sources consisting of
rules are applied to transform nodes (i.e. objects) and create new nodes [Nii 86a, Nii 86b].
Brown et. al. used concepts from the blackboard model to implement a signa!-interpretation
application on the CARE multiprocessor simulator (Brown 86]. Lamina evolved from the
experiences from that effort. In addition, lessons learned in that earlier effort have been
incorporated into our work, including the use of replication and pipelining to gain
performance, and improving efficiency and correctness by erforcing a degree of consis-
tency control over many agents computing concurrently.

4. Design principles

Lamina represents a programming philosophy that relies on the concepts of
replication and pipelining to achieve speedup on parallel hardware. The key to successful
application of these principles relies on finding an appropriate problem decomposition that
exploits concurrent execution with minimal dependency between replicated or pipelined
processing elements.

The price of concurrency and speedup is the cost of maintaining consistency among
objects. When writing a sequential program, a programmer automatically gains mutual
exclusion between read/write operations on data structures. This follows directly from the
fact that a sequential program has only a single process; a single process has sole control
over reads and writes to a variable, for instance. This convenience vanishes when the
programmer writes a concurrent program. Since a concurrent program has many
concurrently executing processes, coordinating the activities of the processes becomes a
significant task.

In this section, we develop the concept of a dependence graph program to provide a
framework 1n which tradeoffs between alternate problem decompositions may be
examined. Choosing a decomposition that admits high concurrency gives speedup, but it
may do so with the expense of higher effort in maintaining consistency. We introduce
dependence graph programs to make the tradeoffs more explicit.




4.1. Speedip

Researchers have debated how much speedup is obtainable on parallel hardware, on
both theoretical and empirical grounds; Kruskal has surveyed this area [Kruskal 85]. We
take the empirical approach because our goal is to test ideas about parallel problem solving
using multiprocessor architectures. Our thinking is guided, however, by 2 number uf
principles describing how to decompose problems to obtain speedup.

4.1.1. Pipelining

Consider a concurrent program consisting of three cooperating processes: Reader,
Executor, and Printer. The Reader process obtains a line consisting of characters from an
input source, sends it to the Executor process, and then repeats this loop. The Executor
performs a similar function, receiving a line from the Reader, processing it in some way,
and sending it to the Printer. The Printer receives lines from the Executor, and prints out
the line. These processes cooperate to form a pipeline; see Figure 1. By using
asynchronous message passing, we obtain concurrent operation of the processes; for
instance, the Printer may be working on one line, while the Executor 1s working on
another. This means that by assigning each process to a different processor, we can obtain
speedup, despite the fact that each line must be inputted, processed, and output
sequentially. By overlapping the operations we can achieve a higher throughput than is
possible with a single process performing all three tasks.

Reader Executor F- nter
‘ —

Figure 1. Decomposing a problem to obtain pipeline speedup.
By decomposing a problem in sequential stages, we can obtain speedup from pipelining.

4.1.2. Rebplication

Consider a variation of Reader-Executor-Printer problem. Suppose that we are able
to achicve some overlap in the operations. but we discover that the Executor stage
consistently takes longer than the other stages. This causes the Printer to be continually
starved for data, while the Reader completes its task quickly and spends most of its time
idle. We can improve the overall throughput by replicating the function of the Executor
stage by creating many Executors. See Figure 2. By increasing the number of processes
performing a given function, we do not reduce the time it takes a single Executor to
perform its function, but we allow many lines to be processed concurrently, improving the
utilization of the Reader and Printer processes, and boosting overall throughput. This
principle of replicating a stage applies equally well if the Reader or the Printer is the
bottleneck.
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Executor-1
Reader | ° Printer
T °® ——_
Executor-n

Figure 2. Decomposing a problem to obtain replication speedup.
By duplicating ideatical problem solving stages, we can obtain speedup from replication.

4.2. Correctness
4.2.1. Consistency

In order to achieve speedup from parallelism, we decompose a problem into smaller
sub-problems, where each sub-problem is represented by an object. By doing this, we
lose the luxury of mutual exclusion between the sub-problem: because of interactions and
dependencies that typically exist between sub-parts of a problem. For example, in the
Reader-Executor-Printer problem, the simplest version is whrere a line may be operated
upon by one process wuly independently; we might want to perform ASCII to EBCDIC
character conversion of each line, for instance. We organize the problem solving so that
the Reader assembles fixed-length text strings, the Executor performs the conversion, and
the Printer does ourtput duties. This problem is well-suited to speedup from the simple
pipeline parallelism illustrated in Figure 1. In MacLennan’s value/object terminology, a
“fixed-length text string” may be viewed as a value that represents the i-th line in the input
text; the text string is read-only and it is atemporal. The trick isto  :w the ASCI and
EBCDIC versions of a text srings as different values corresponding to the i-th line; the
Executor’s role is to take in ASCII values and transform them into EBCDIC values of the
same line. As we will see, value passing has desirable properties in concurrent message-
, passing systems.

In a more complicated example, we might want to perform text compression by
encoding words according to their frequency of appearance, where the Reader process
counts the appearance of words and the Executor assigns words to a variable length output
symbol set. The frequency table is a source of ouble; it is in object which the Reader
writes and updates, and which the Executor reads. Unfortunately, the semantics we
impose on the text compression task requires that the Reader complete its scan of the input
text before the Executor can begin its encoding task. This dependency prevents us from
exploiting pipeline parallelism.

As another <xample, we might want to compile a high-level language source

program text (e.g. Pascal, Lisp, C) into assembly code. Suppose we allow the Reader to
build a symbol table for functions and variables, and we let the Executor parse the
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tokenized output from the Reader, while the Primer.outputs assembly code from the
Executor’s syntax graph swuctures. In the scheme outlined here, the symbol table resides
with the Reader, so whenever the Executor or Printer needs to access or upf.late the symbol
table, it must send a message to the Reader. Consistency becomes an important issue
within this setup. For instance, suppose that the Executor determines on the basis of its
parse. that the variable x has been declared global. Within a procedure, a local variable also
named x is defined, which requires that expressions referring to x within this procedure use
a local storage location. Suppose the end of the procedure is encountered, and since we
want all subsequent occurrences to x to refer to the global location, the Executor marks the
entry for x accordingly (via a message to the Reader). When the Printer sees a reference to
X, it consults the symbol table (via a message to the Reader) to determine which storage
location should be used; if by misfortune the Printer happens to be handling an expression
within the procedure containing the local x, and the symbol tabie has already been updated,
incorrect code will be generated. The essential point is that the symbol table is an object; as
we defined earlier, it is shared by several parallel processes, and it changes. A number of
fixes are possible, including distinguishing variables by the procedure they are occur
within, but this example illustrates that the presence of objects in concurrent program raises
a need to deal with consistency.

Consistency is the property that some invariant condition or conditions describing
correct behavior of a program holds over all objects in all parallel processes. This is
typically difficult to achieve in a concurrent program, since the program itself consists of a
sequential list of statements for each individual process or object, while consistency applies
to an ensemble of objects. The field of distributed systems focuses on difficulties arising
from consistency maintenance [Cornafion 85, Weihl 85, Filman 84]. Smith [Smith 81]
refers to this programming goal as the development of a problem-solving protocol.

The work of Schlichting and Schneider {Schlichting 83 is particularly relevant for
our situation: they study parual correctness properties of unreliable datagram asynchronous
message-passing distributed systems from an axiomatic point of view. They describe a
number of sufficient conditions for partial correctness on an asynchronous distributed
system:

"« monotonic predicates,
» predicate ransfer with acknowledgements.

An predicate is monotonic if once it becomes true, it remains so. For example, if
the Reader process maintains a count of the lines in the variable totaiLines, and it
encounters the last line in the input text, as well having seen all previous lines, then it might
send the predicate P, “cotaliines = 16,” to the Executor and to the Printer. The Printer
process might use this information even before it has received all the lines, to check if
sufficient resources exist to complete the job, for instance. Intuitively, it is valid to assert
the total number of lines in the input text because that fact remains unchanged (assuming
the input text remains fixed for the duration of the job). Formally, the Reader maintains the
following invariant conditon on the predicate P:

Invariant: *“message not sent” or “P is true”
In contrast, an assertion that the current line is 12, as in “currentLine = 12,” changes as

each line is processed by the Reader. The monotenic critcrion cannot be used to guarantee
the correctness of this assertion.




A technique to achieve correctness without monotonic predicates is to use
acknowledgements. The idea is to require the sender to maintain the truth condition of a
predicate or assertion until an acknowledgement from the receiver retums. In the Reader-
Executor-Printer example, the Reader follows the convention that once it asserts
“eurrentLine = 12.” it will refrain from further actions that would violate this fact until it
receives an acknowledgement from the Executor. This protocol allows the Executor to
perform internal processing, queries to the Reader, and updates to the Reader, all with the
assurance that the current line will remain unchanged until the Executor acknowledges the
assertion, thereby signalling that the Reader may proceed to change thf_:_asscrtion.
Formally, the Reader and Executor maintain the following invariant condition on the
predicate P:

Invariant: “message not sent” or “P is true” or “acknowledgement received”

Note that the each technique has drawbacks, despite their guarantees of correctness.
For the mr-otonic predicate techniq' e, the challenge is to define a problem decomposition
and solution protocol for which monotonic predicates are meaningful. In particular, if a
problem decomposition truly allows transfer of values between processes, then by the
semantics of values as we have defined them, values are automatically monotonic. This
explains in formal terms why a “data flow” problem decomposition that passes values
avoids difficult problems related to consistency. For the predicate acknowledgement
technique, we may address problems that do not cleanly admit monotonic predicates, but
we lose concurrency in the assert-acknowledge cycle. Less concurrency tends to translate
intc less speedup. In the worst case, we may lose so much concurrency in the assert-
acknowledge cycle that we find that we have spent our efforts in decomposing the problem
into sub-problems only to discover that our concurrent program performs no faster than an
equivalent sequential program!

Throughout the design process. we are motivated by a desire to obtain the highest
possible performance while maintaining correctness. For tasks in the problem whose
durations impact the performance measures, we take the approach of looking first for
problem decompositions that allow either value-passing or monotonic predicate protocols.
Where neither of these are possible, we implemen: predicate acknowledgement protocols.
In :he implementation of Airrac-Lamina, we did not have to resort to heuristic schemes that
did not guarantee correctness.

For initialization tasks, the time to perform initialization tasks (e.g. creating
manager objects and distributing lookup tables) is not counted in the performance metrics,
but correctmess is paramount. Since initialization requires the establishment of a consistent
beginning state over many objects, we use the predicate acknowledgement technique to
have objects initialize their intemal state based on information contained in an initialization
message, and then signal their readiness to proceed by responding with an
acknowledgement message.

4.2.2. Mutual exclusion

Lamina objects are encapsulations of data, together with methods that manipulate
the data. They constitute monitors which provide mutual exclusion over the resources they
encapsulate. These monitors are “non-nested” because when a Lamina method (i.e.
message handler) in the current CARE implementation invokes another Lamina method, it
does so by asynchronous message passing (where the sender continues executing after the
message is sent), thereby losing the mutual exclusion required for nested monitor calls. In
return, Lamina gains opportunities to increase concurrency by pipelining sequences of
operations.
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Within the restriction of non-nested monitor calls, the programmer may use Lamina
monitors to define atomic operations. If correctness were the sole concem, the
programmer could develop the entire problem solution within a single method on a single
object; but this is an extreme case. The entire enterprise of designing programs for
multiprocessors is motivated by a desire for speedup, and monitors provide a base level of
mutual exclusion from which a correct concurrent program may be constucted.

The critical design task is to determine the data structures and methods which
deserve the atomicity that monitors provide. The choice is far from obvious. For example,
in the ASCII-to-EBCDIC translator example, we assumed the Executor process
sequentally scanning through the string, ranslating one character at a time. We see that the
translation of each character may be performed independently, so a finer-grained problem
decomposition is to have many Executor processes, each translating a section of the text
line. In the exaeme, we can arrange for each character to be translated by one of many
replicated Executor processes. Choosing the best decomposition is a function of the
relative costs of performing the character translation versus the overhead associated with
partitioning the line. sending messages, and reassembling the translated text fragments (in
the correct order!). The answer depends on specific machine performance parameters and
the type of task involved. which in our example is the very simple job of character
translation, but might in general be a time-consuming operation. Unfortunately, the
programmer often lacks the specific performance figures on which to base such decisions,
and must choose a decuinposition based on subjective assessments of the complexity of the
task at hand, weighed against the perceived run-time overhead of decomposition, together
with the run-time worries associated with consistency maintenance. On the issue of how to
choose the best “grain-size” for problem solving, we can offer no specific guidance.
However, since the CARE-Lamina simulator is heavily instrumented, it lets the
programmer observe the relative amount of time spent in ictual computation versus
overhead activities.

In addition to providing mutual exclusion, Lamina al<o encourages the structured
programming style that results from the use of objects and methods. In particular, mutual
exclusion may be exploited without necessarily building large, monolithic objects and
methods that might reflect poor software engineering practice. Since Lamina itself is built
on Zetalisp's Flavors system [Weinreb 80], it is easy for the programmer to define object
“flavors™ with instance variables and associated methods to be atomically executed within a
Lamina monitor. This can provide important benefits of modularity and structure to the
software engineering effort.

To summarize, Lamina objects and methods may be viewed as non-nested monitor
constructs that provide the programmer with a base level of mutual exclusion. The
potential for additional concurrency and problem-solving speedup increases as finer
decompositions of data and methods are adopted. However, these benefits must be
weighed against the difficulties of maintaining consistency between objects in a concurrent
program. Two techniques for maintaining consistency have been described, differing in
their applicability and impact on concurrency.

4.3. Dependence graph programs

The previous sections have defined concepts relevant to the dual goals of achieving
speedup and correcmess. This section builds upon those concepts to provide a framework
in which tradeoffs between speedup and correctness may be examined. A dependence
graph program is an abstract representation of a solution to a given problem in which
values flow between nodes in a directed graph, where each node applies a function to the
values armiving on its incoming edges and sends out a value on zero or more outgoing
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edges. The edges correspond to the dependencies which exist between the functions
[Arvind 83]. A pure dependence graph program is one in which the functons on the nodes
are free from side effects; in particular, a pure dependence graph program prohibits a
function from saving state on any node. (Note that this definition does not preclude a
system-level program on a node from handling a function £ (x, ¥) by saving the value of x
if the value of x arrives before the value for ¥. Stictly speaking, an implementation of an £
function node must save state, but this state is invisible to the programmer.) A hybrid
dependence graph program is one in which one or more nodes save state in the form of
local instance variables on the node. Functions have access to those instance variables.

Gajski et. al. [Gajski 82] summarize the principles underlying pure data flow
computation:

« asynchrony
« functionality.

Asvnchrony means that all operations are executed when and only when the required
operands are available. Functionality means that all operations are functions, that is, there
are no side effects.

Pure dependence graph programs have two desirable properties. First, consistency
is guaranteed by design. As we have defined it, there are only values and transformations
applied to those values. There are no objects to cause inconsistency problems. Second,
we can theoretically achieve the maximal amount of parallelism in the solution, and if we
ignore overhead costs, maximize speedup in overall performance. This follows from the
asynchrony principle, which means that in the ideal case we can arrange for each
computation on a node to proceed as soon as all values on the incoming edges are available.

Hybrid dependence graph programs allow side effects to instance variables on
nodes, thereby making it more convenient and straightforward to perform certain
operations, especially those associated with lookup and matching. This immediately
introduces objects into the computational model, and raises the usual concerns about
consistency and correctness.

We will use dependence graph programs to serve two purposes. First, we depict
the dependencies contained within a problem. Second, we explain why we made certain
design decisions in solving the Airtrac problem, in particular, we show why we impose
certain consistency requirements on the problem solving protocol. A dependence graph
serves as an abstract representation of a problem solution, rather than a blueprint ror actual
implementation. Specifically, we want to avoid the pitfall of using a dependence graph
program to dictate the actual problem decomposition. Overhead delays associated with
message routing/sending and process invocation degrade speedup from the theoretical ideal
if the actual implementation chooses to decompose the problem down to the grain-size
typically found in a dependence graph representation. Given an arithmetic expression, for
instance, it may not be desirable to define the grain-size of primitive operations at the level
of add. subtract, and multiply. This may lead to the undesirable situation where excessive
overhead time is consumed in message packing, tagging, routing, packing, matching,
unpacking, and so forth, only to support a simple add operation.

Consider the following numerical example from Gajski et. al. [Gajski 82]. The
pseudo-code representation of the problem is as follows:




Co-o
for i from 1 ro 8 do
begin
ai'dz e;
b, = a; fi
¢y = by *cig
end

One possible dependence graph program for this problem is shown in Figure 3. This is the
same graph presented by Gajski et. al. They assume that division takes three processing
units, multiplication takes two units, and addition takes one unit. As noted in their paper,
the critical path is the computational sequence ay, by, ¢1, ¢3, €3, ¢4, €5, €6, €7, Cg; the
lower bound on the execution time - 13 time units.

o1, el d2, 82 d3, e3 d4, ed ds, e5 dé, e6 47, 7 ds, e8

{1 L t2 t3 f4 L 143 L t6 17 L 18

/ / / / / / /

a1 2y 33? a4 as a6 a7 a8y
v

b1 b2 b3 b4 b5 b6 b7 b8
- - + + + —P + —P + + |
c0 3 c2 c3 cé4 c5 c6 c7 c8

Figure 3. A dependence graph program for a simple numerical computation.

A possible concurrent program implementation would be to assign eight processes
to compute the quantities by,...,bg, and a ninth to combine the b; and output ¢y,...,cg.

Such an arrangement maximizes the decomposition of the problem into sub-problems that
may run concurrently, while minirnizing the communication overhead. For instance, there
is no loss in combining the computation of ¢y,...,cg into a single process because of the

inherently serial nature of this particular computasion.

Another concurrent program might choose a slightly different decomposition and
partition the computation of cy,...,Cg into, say, three processes: ¢}-c5-C3, C4-C5-Cg, and
cg-cg. This arrangement uses 11 processes versus the 9 processes in the previous

example. While this leads to no improve...ent in the lower bound of 13 time units for a
single computation with d, ¢, and f, it shows an improvement with repeated computations
with different values of the input arrays, d, e, and f. For instance, this allows one
computation to be summing on the cy-cg process while another is summing on the c4-c5-C¢
process. Depending on the compicexity of the computation relative to the overhead costs, it
might even be worthwhile to define one process for each of the cy,...,cg, giving 16

processes overall. This illustrates two points. First, a strictly sequential computation gives

G-12




an opportunity for pipeline concurrency if many such computations are rcqgired. Second,
given a dependency graph, many possible problem decompositons are possible.

Gajski et. al. also present a different dependence graph program that is optimized to
eliminate the “ripple” summation chain by a more efficient summation network. The
dependence graph program for this scheme 1s shown in Figures 4 and 5. Figure 4 is the
“top-level” definition of the program. We use the convention of using a single box,
optimized summation, in Figure 4 to represent the subgraph that performs the more
efficient summation. Figure 5 shows the expansion of that box as a graph. Showing a
dependence graph program in this way is merely a convenience; one should envision the
subgraphs in their fully expanded form in the top-level dependence program definition.

The associative property of addition is used to derive the optimized summation
function. For instance, the computation of cg is rewritten as follows:

c
8
= (((({(((c0 + b)) + by) + b3) + by) + bg) + bg) + bq) + bg)
= (20 + ((by + by) + (b3 + by))) + ((bg + bg) + (by + bg))

By regrouping the addition operations, this dependence graph program has more
parallelism, and reduces the lower bound on execution time from 13 to 9 execution time
units. It is important to realize that the second program is truly different from the first; it
cannot be obtained from the first by graph transformations or syntactic manipulations that
do not rely on the semantics of the functions on the nodezx.

dt, o1 d2, e2 d3, e3 d4, ¢4 ds, e5 dé. 86 d7, e7 d8, e8

1 ‘ f2 L t3 L t4 5] 6 L 7 t8 L

/ / / / / /
l at a2 g | vy |asy a8
b1 | b2 b3 b4 i bS b8
€0 _.‘ optimized summation
c1 c2 c3 c4 ¢S5 ch c7 c8

Figure 4. A dependence graph pmgram for the simple numerical computation,

This uses optimization of the recurrence relation using the associative property of
addition. This represents the “top-level” definition of the solution. The optimized
summation subgraph is shown bere a single box, and is shown in expanded form in
Figure §.




optimized summation is definea as...
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Figur= 5. Definition of the “opumized summaton” subgraph.

This examgie highlights several points. First, a given problem may have more than
one valid dependence graph program. In the example presente! here, the use of knowledge
about the underlying semantics of the addition function allows more parallelism. Second,
the dependence graph program serves as a intermediate representation from which the
solution may be defined for a parallel machine. Third, the dependence graph program does
not necessarily make a commitment to the form of the concurrent program. Fourth, for
convenience we may describe a dependence graph program as a top-level graph, together
with several subgraph definitions.

S. The Airtrac problem

In Airtrac, the problem is to accept radar track data from one or more sensors that
are looking for aircraft. Figure 6 depicts a region under surveillance as it might be seen on
a display screen at a particular snapshot in time. (Whereas Figure 6 shows many reported
sightings, an actual radar would probably show only the most recent sighting.) Locations
are designated as either good or bad, where a bad location is illegal or unauthorized, and a
good location is legal. The “X” and “Y” symbols represent locations of a good and bad
airport, respectively. The locations of radar and acoustic sensors are also shown. The
small circles represent track reports that show the location of a moving object in the region
of coverage.

Track reports are generated by underlying signal processing and tracking system,
and contain the following informaton:

* location and velocity estimate of object (in x-y plane)
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* locanon and velocity covariance

« the time of the sighting, called the scanrime
» track id for identification purposes.

We would like to answer the following questions in real-time:
« Is an aircraft headed for a bad destination?
» Is it plausible that an aircraft is engaged in smuggling?
By “smuggling”™ we mean the act of transporting goods from a region or location desig-

nated as bad to another bad location. For instance, flying from an illegal airstrip and
landing at another illegal airstrip constitutes smuggling.
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Figure 6. Input to Airtrac.

This shows the inputs that the system receives. The small circles represent estimated
positions of objects from radar or acoustic sensors tagged by their identification number
and observaton time; the goal of the system is to use the time history of those sightings
to infer whether an aircraft exists, its possible destinations, and its strategy.

This paper describes our implementation of a solution of a portion of the Airtrac
problem. We refer to this portion as the dara associarion module. Figure 7 depicts the
desired output of the data association step: groupings of reports with the same track id into

straight-line, constant-speed sections. These are called Radar Track Segments, and have
four properties:

* If the Radar Track Segments contains three or more reports, a best-fit line is
computed. If the fit is sufficiently good, the segment is declared confirmed.

« If a best-fit line has been computed, each subsequent report must fit the line
sufficiently closely. If so, the Radar Track Segments remains confirmed.
Otherwise, the report that failed to fit (call it the non-fitting report) is treated
specially, and the track is declared broken.

* A broken track causes the non-fitting report and subsequent reports to be used to
form a new Radar Track Segment.




“‘

« The last repon for a given track id defines that a track is declared inactive.

The remaining parts of the Airtrac problem have not yet been implemented as of this
writing, but are described more fully elsewhere [Minami 87, Nakano 87].
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Figure 7. Grouping reports into segments in data associaton.

This shows the first step in problem solving. grouping the reports into straight-line sec-
nons called Radar Track Segments.

5.1. Airtrac data association as dependence graph

Figure 8 shows the Airtrac data association problem as a dependence graph
program. On a periodic basis, wack reports consisting of position and velocity information
for a set of rack ids enters the system. Two operations are performed. First, the system
checks if a track id is being seen for the first time. If so, a2 new track-handling subgraph is
created. A wack-handling subgraph is shown in Figure 8 as a functional box labeled
“handle track i,” which expands into a graph as shown in Figure 9. Second, the system
checks if any track id seen in a previous time has disappeared. If so, it generates an
inactivation message for the handle =rack subgraph for the particular track id that
disappeared. If the track id has been seen previously, then it is sent to the appropriate
handle track subgraph.

We distinguish between pure functional nodes, shown as rectangles, and side-effect
nodes, shown as rounded rectangles. One use of side-effect nodes is to keep track of
which wack ids have been seen at the previous time. For instance, by performing set
difference operations against the current set of track ids, it is possible to determine the
disappeared and new tracks:

disappearedTlracks = previousTracks -~ currentTracks




newTracks = currentTracks - previousTracks

One way to implement this scheme is to have the ids disappeared? and id previcusly
seen? nodes update local variables called previousTracks and currentTracks, as

successive track reports arrive.
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Figure 8. Dependence graph program representation of Airtrac data association

The dashed boxes indicate the problem decomposition used .o the Lamina
implementaaon.

Besides detecting new and disappeared tracks, side-effcct nodes are used to create a
new track-handling subgraph, and maintain the lookup tabie between track id and the
message pathway to each track-handling subgraph. New track creates a new track handler
subgraph. Whenever a new track is encountered. send repozt to appropriate track
is notified, so that subsequent reports will be routed correctly. This arrangement requires
that one and only one track handler exist for each track id. send report ¢to
appropriate zrack saves the handle to the track handler created by new track, sorts
the incoming reports, and sends reports to their proper destinations.

In this abswract program, we implicitly assume that only one track report may be
processed at a time by the four side-effect nodes in Figure 8. If we allow more than one
track report to be processed concurrently, we may encounter inconsistent situations that
allow, for instance, a track id to be seen in one track report, but the send report to
appropriate track node does not yet have the handle to the required track handler
subgraph when the next wack report arrives. We define the program semantics to avoid
these situations.

Handle =rack receives track reports for a particular id, as well as an inactivation
message if one exists. It is further decomposed into a subgraph as shown in Figure 9. The

4A handle is analogous 10 a mail address in a (physical) postal system: a Lamina object may use
anotber object’s handle to send messages to that object. Since the message passing system utilizes dynamic
routing and we assume that an object remains stationary ooce created, the handie does not need t0 encode
any information about the particular path messages should follow.
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nodes in the handle track subgraph pass a structured value between them, called track
segments. A frack segment has the following intemal structure:

» report list (a list of ack reports, inidally empty)

« best-fit line (a vector of real numbers describing a straight-line constant-velocity
path in the x-y plane)

Each node may transform the incoming value and send a different value on an outgoing
edge. Add appends a report to the report list of a track segment. Linefit computes the
best-fit line. and if the confirmation conditions hold, sends the wack segment to confirm
Confirm declares the track segment as confirmed, and passes the list to check £it. If
linefit fails to confirm, the earliest report in the list is dropped by drop, and another
add, linefiz box awaits the amrival of the next report to restart the cycle. The
inactivate function waits untl all reports have arrived before declaring the track inactive.
Conceprually, we view the operations of confirm and inactivate as being monotonic
assertious made to the “outside world,” ratner than value transformations to the track
segment.

“handle track® 1s defined as. ..
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Figure 9. Decomposition of the “handle track” sub-probiem.

The dashed boxes indicate the problem decomposition used in the Lamina
implemeatation.

Check £it itself is further decomposed into more primitive operations, as shown
in Figure 10. The lLinecheck operation is similar to the 1:aefit function previously
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described, except that it compares a new report against the best-fit line computed during the
linefit operation: if the new report maintains the fit, the repor list is sent to the o box, and
this cycle is repeated for the next report. If the linecheck operation fails, then the track is
declared broken, a new track segment is defined. This oack segment is sent thc_ report that
failed the linecheck operation, in addition to all subsequent reports for this particular track
id. The wack handling cycle is repeated as before.

*check fit” is defined as...
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Figure 10. Decomposition of the “check fit" sub-problem.

The dashed boxes indicate the problem decomposition used in the Lamina
implementation.

A number of observations may be made about the dependence graph program
described in this section. First, the sequence of the reports matters. The graph structure
clearly depicts the requirement that the incorporation of the Ri-th report into the track
segment by the add operation must wait until all prior reports, R1,..., Ri-1, have been
processed. This is true for the linefiz, linecheck, and inactivate functions.
Second, this program avoids the saving of state information except in the operations that
must determine whether a given track id has been previously seen, and in the sorting
operation where track reports are routed to the appropriate track handler. Except for these,
we find that the problem may be cast in terms of a sequence of value transformations.
Third, the program admits the opportunity for a high degree of parallelism. Once the track
handler for a given track id has been determined, the processing within that block is
completely independent of all other tracks. Fourth, the opportunity for concurrency within
the handling of a panticular track is quite low, despite the outward appearance of the
decompositions shown in Figures 8 and 9. Indeed, an analysis of the dependencies shows
that reports must be processed in order of increasing scantime. Fifth, unlike certain
portons of the dependence graph that have a structure that is known g priori, the track

-
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handler portions of the graph have no prior knowledge of the track ids that will be
encountered during processing, implying that new tracks need to be handled dynamically.

5§.2. Lamina implementation

In this section, we express the solution to the data association problem as a set of
Lamina objects, together with a set of methods on those objects which embody the abstract
solution specification presented in the previous section.

Figure 11 shows how we decompose the Airtrac problem for solution by a Lamina
concurrent program. We define six classes of objects: Main Manager, Input Simulator,
Input Handler, Radar Track Manager, Radar Track, and Radar Track Segment. Some
objects, referred to as szatic objects, are created at initialization time, and include the
following object classes: Main Manager, Input Simulator, Input Handler, and Radar Track
Manager objects. Others are referred to as dvnamic objects, are created at run-time in
response to the particular input data set, and include the following object classes: Radar
Track and Radar Track Segnient.

inputSimuiator
radar reports firmati
in penodic batches RT-1 RTS-1-1 confirmation,
in penodic batch 8 =& inactivation
InputHandler RadarTrack RT-2 RTS-2-1 RYS-2-2 |~
-1 Manager-1
| ] [ ] [ ] [ ]
[ ] [ ] [
L ] [ [ ] ®
inputHandiar RadarTrack > RT-n RTS-r-1 RTS-n-2 |~
-k Manager-m
dispatch create, sort
reorder, create  reorder, raorder,
detect breaks,  detect breaks,
Create managers create create
Main Manager
Figure 11. Object structure in the data association module.

Each object is implemented as a Lamina object, which in Figure 11 corresponds to a
separate box. The problem decomposition seeks to achieve concurrent processing of
independent sub-problems. The Lamina message-sending system provides the sole means
of message and value passing between objects. Wherever possible, we pass values
berween objects to minimize consistency problems, and to minimize the need for protocols
that require acknowledgements. For example, we decompose our problem solving so that
we require acknowledgements only during initialization where the Main Manager sets up
the communication pathways between static objects.

With respect to the dependence graph program, the Lamina implementation takes a

straightforward approach. All of the side-effect functions contained in Figure 8, together
with some operations to support replication, reside in the Input Handler and Radar Track
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er object classes. Obiects in these two classes are static; we create a predetermined
rr:luar:n‘ggr of tf:em at initializan'!on time to handle the peak logd'of reports thrqugh the system.
Replication is supported by partitioning the task of recognizing new and disappeared track
ids among Radar Track Managers according to a simple modulo calculadon on the track id.
Given the partitioning scheme, each Radar Track Manager operates completely
independently from the others. Thus, although it needs to maintain a set of objects (e.g.
the current tracks, previous tracks), the objects are _cqcapsulated in a Larrpna ob_)_cct.
Access to and updating of these objects is atomic, providing the mutual exclusion required
to assure correcmess as specified by the dependence graph program.

Functions in Figures 9 and 10 reside mostly in objects of the Radar Track Segment
class, with the inactivation function being perforined by objects of the Radar Track class.
Objects of these two classes are dynamic: we create objects at run-time in response to the
specific track ids that are encountered. For any particular track id, one Radar Track object
together with one or more Radar Track Segment objects are created. A new Radar Track
Segment is created each time the track is declared broken, which may occur more than once
for each track id. Unlike the dependence graph program where we po:tulate a track
segment as a value successively transformed as it passes through the graph, the Lamina
implementation defines a Radar Track Segment object with instance variables to represent
the evolving state of the rack segment. We implement ail the major functions on track
segments as Lamina methods on Radar Track Segment objects. Again, Lamina objects
provide mutual exclusion to assure correctness.

Although nothing in the problem formulation described here indicates why we.
create multiple Radar Track Segments for a given wack, we do so in anticipation of adding
functionality in future versions of Aintrac-Lamina. From examination of Figure 10, we see
that given any sequence of reports Ri, and any pattern of troken tracks, we obtain no
additional concurrency by creating a new Radar Track Segment when a track is declared
broken. This is because in the dependency grapn program oresented here, no activity
occurs on one Radar Track Segment after it has created ancther Radar Track Segment.
However, we anticipate that in subsequent versions of Airtrac-Lamina, a Radar Track
Segment will continue to perform actions even after a track is declared broken, such as to
respond to queries about itself, or to participate in operations that search over existing
Radar Track Segments.

Logically. the semantics of the dependency graph program and the Lamina program
are equivalent, as they must be. The difference is that the former requires a graph of
inde*inite size, where its size corresponds to the number of reports comprising the track.
The .anter requires a quantity of Radar Track Segment objects equal to one plus the number
of times the track is declared broken. Although we can easily conceptualize a graph of
indefinite size in a dependency graph program, we cannot create such an entity in practice.
Because object creation in Lamina takes time, we oy to minimize the number of objects that
are created dynamically, especially since their creation time impacts the critical path ime. A
poor solution is to dynamically create the objects corresponding to an indefinite-sized graph
as we need them. A better solution is to create a finite network of objects at initialization
ume, with an implicit “folding™ of the infinite graph onto the finite network, thereby
avoiding any object-creation cost at run-time. Our Lamina program, in fact, uses a hybrid
of these two approaches, folding an indefinite “handle wack” graph onto each Radar Track
Segment object, and creating a new Radar Track Segment object dynamically when a a
track is declared broken. By this mechanism, we model ransformations of values berween
graph nodes by changes to instance variables on a Lamina object. The effect on
performance is beneficial. Relative to the first solution, we incur less overhead in message
sending between objects because we have fewer objects. Relative to the second solution,
we create objects that correspond to track ids that appear in the input data stream as they are
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needed, which has the effect of bringing more processors to bear on the problem as more
tracks become visible.

Both the Radar Track and Radar Track Segment collect reports in increasing
' scantime sequence. They do so because of the ordering dictated by the dependence graph
program, and because the Lamina implementation at the time the experiments were
performed did not provide automatic message ordering. Moreover, we }mow r.hgt simply
collecting reports in order of receipt leads to severe correctness degradation. For instance,
if the scantimes are not contiguous, the scheme by which a Radar Track Segment computes
the line-fit leads to nonsensical results because best-fit lines will be computed based on
non-consecutive position estimates, leading to erroneous predictions of aircraft movement.
To circumvent these problems, we use application-level routines to examine the scantime
associated with a report, and queue reports for which all predecessors have not already
been handled. These routines effectively insulate the rest of the application from message
receipt disorder, and allow the Lamina program to successfully use the knowledge
embodied in the dependency graph program.

To indicate the size of the problem, a typical scenario that we experimented with
contained approximately 800 radar track reports comprising about 70 radar tracks. At its
peak, there is data for approximately 30 radar tracks armriving simultaneously, which
roughly corresponds to 30 aircraft flying in the area of coverage.

The correspondence between the Lamina objects in the implementation presented
here and the primitive operations embodied in the dependence graph program is shown in
the Table 1. The functions described in the dependence graphs are implemented on Radar
Track Manager, Radar Track, and Radar Track Segment objects. The Main Manager and
Input Simulator perform tasks not mentioned in the dependc-nce graph program. Their
tasks may be viewed as overhead: the Main Manager performs initialization, and Input
Simulator simulates the input data port. The Input Handler's job is to dispatch incoming
reports to the correct Radar Track Manager, thereby supporting the replicaton of the Radar
Track Manager function across several objects. In this way the task of the Input Handler
may be viewed as a functional extension of the Radar Track Manager tasks.
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Table 1. Correspondence of Lamina objects with functions in the dependence graph

program

Lamina object Corresponding dependence graph program operation

Main Manager -none- S
(Create the manager objects in the system at initialization
time.)

Input Simulator -none-

(Simulate the input data port that would exist in a real
system. This function is an artifact of the simulation.)

Input Handler -none-
(Allows replication of the Radar Track Manager objects; this
may be viewed as a functional extension of the Radar Track
Manager.)

Radar Track Manager ids disappeared?, id previously seen?, new track,
send report to appropriate track

Radar Track add, inactivate

Radar Track Segment ad<, linefit, confir-. drop, inactivate,
linecheck, CK, break, new :2gment

Table 1 also shows that we decompose the problem to a lesser extent than might be
suggested by the dependence graph program, but the overall level of decomposition is still
high. We “fold” the dependence graph onto a smaller number of Lamina objects, but we
nonetheless obtain a high degree of concurrency from the independent handling of separate
tracks. Additional concurrency comes from the pipelining of operations between the
following sequence of objects: Input Handler, Radar Track Manager, Radar Track, and
Radar Track Segment.

6. Experiment design

Given our experimental test setup, there are a large number of parameter settings,
including the number of processors, the choice of the input scenario to use, the rate at
which the input data is fed into the system, the number of manager objects to utilize; for a
reasonable choice of variations, trying to run all combinations is futile. Instead, based on
the hypotheses we attempted to confirm or disconfirm, we made explicit decisions about
which experiments to try. We chose to explore the following hypotheses:

« Performance of our concurrent program improves with additional processors,
thereby artaining significant levels of speedup.
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« Correct 2ss of our concurrent program can be maintained despite a high degree of
problem decomposition and hughly overloaded input data conditions.

« The amount of speedup we can achieve from additional processors is a function
of the amount of parallelism inherent in the nput dara set.

Long wall-clock times associated with each experiment and limited resources forced
us to be very selective about which experiments to run. We were physically unable to
explore the full combinatorial parameter space. Instead, we varied a single experimental
parameter at a time, holding the remaining parameters fixed at a base setting. This strategy
relied on an intelligent choice of the base settings of the experimental parameters.

We divided our data gathering effort into two phases. First, we took measurements
to choose the base set of parameters. Our objective was to run our concurrent program on
a systemn with a large number of processors (e.g. 64), picking an input scenario that feeds
data sufficiently quickly into the system to obtain full but not overloaded processing
pipelines. We used a realistic scenario that has parallelism in the number of simultaneous
aircraft so that nearly all the processors may be utlized. Finally, we chose the numbers of
manager objects so the managers themselves do not limit the processing flow. The goal
was to prevent the masking of phenomena necessary to confirm or disconfirm our
hypotheses. For example, if we failed to set the input data rate high enough, we would not
fully utilize the processors, making it impossible that additional processors display
speedup. Similarly, if we failed to use enough manager objects, the overall program
performance would be strictly limited by the overtaxed manager objects, again negating the
effect of additional processors.

Based on measurements in phase one, we chose the fo..owing settings for the base
set of parameter settings:

* 64 processors,

» Many-aircraft scenario (described more fully below),

* Four input handler objects,

« Four radar track manager objects,

+ Input data rate of 200 scans per second.

These settings give system performance that suggests that processing pipelines are
full, but not overloaded, where nearly all of the processing resources are utilized (although

not at 100 percent efficiency), and the manager objects are not themselves limiting overall
performance.

The input data rate governs how quickly track reports are put into the system. As
reference, the Airrac problem domain prescribes an input data rate of 0.1 scan per second
(one scan every 10 seconds), where a scan represents 2 collection of track reports
periodically generated by the tracking hardware. For the purpose of imposing a desired
processing load on our simulated multiprocessor, our simulator allows us to vary the input
data rate. With a data rate of 200 scans per second, we feed data into our simulated
multiprocessor 2000 times faster than prescribed by the domain to obtain a processing load
where parallelism shows benefits. Eguivalently, we can imagine reducing the performance
of each processor and message passing hardware in the multiprocessor by a factor of 2000
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to achieve the same effect, or with any combination of input data rate increase and hardware
speed reduction that results in a net factor of 2000.

In the second phase, we vary a single parameter while holding the other parameters
fixed. We perform the following set of three experiments:

» Vary the number of processors from 1 to 100.
« Vary the input scenario to use the one-aircraft scenario.

« Vary the number of manager objects.

Figure 12 shows how the many-aircraft and one-aircraft scenarios differ in the
number of simultaneous active tracks. In the many-aircraft scenario, many aircraft are
active simuitaneously, giving good opportunity to utilize parallel computing resources. In
contrast, the one-aircraft scenario reflects the extreme case where only a single aircraft flies
through the coverage area at any instant, although the total number of radar track reports is
similar between the two scenarios. Although broken tracks in the one-aircraft scenario may
give rise to multiple rack ids for the single aircraft, the resulting radar tracks are non-

overlapping in time.
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Figure 12. Comparison of the number of active tracks in the many-aircraft and one-

aircraft scenarniocs.

This shows the aumber of active tracks versus the scan. The sca- number corresponds to
scenano time in increments of 0.1 seconds.

7. Results

7.1. Speedup

Our performance measure is latency. Latency is defined as the duration of time
from the point at which the systemn receives a darum which allows it to make a particular
conclusion. to the point at which the concurrent program makes the conciusion. We use
latency as our performance measure instead of total running time measures, such as “total
time to process all oack repons,” because we believe that the latter would give undue
weight to the reports near the end of the input sequence, rather than weigh performance on
all track reports equally.

We focus on two types of latencies: confirmation latency and inactivation latency.
Confirmarion latency measures the duration from the time that the thirg consecunve report
is received for a given track id, to the time that the system has fitted a line through the
points, determined that the fit is valid, and it asserts the confirmation. /nacrivarion latency
measures the duration from the time that the system receives a track report for the time
following the last report for a given track id, to the time when the system detects that the
track is no longer active, and asserts the inactivation. Since a given input scenario contains
many track reports with many distinct track ids, our results report the mean together with
plus and minus one standard deviation.

Figures 13 and 14 show the effects on confirmation and inactivation latencies,
respectively, from varying the number of processors from 1 to 100. Boxes in the graphs
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indicate the mean. Error bars indicate one standard deviation. The dashed line indicates the
locus of linear speedup relative to the single processor case; its locus is equivalent to an

Spy1 speedup level of n for n processors.
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Figure 13. Confirmaton latency as a function of the number of processors.

This measures the duration from the time that the third consecutive report is received fora
given track id. to the time that the system has fitted a line through the points, and
determined that the fit is valid.

The results for both the confirmation and inactivation show a nearly linear decrease
in the mean latencies, corresponding to SjQ/) speedup by a factor of 90 for the
confirmation latency, and to Sgg,] speedup by a factor of 200 for the inactivation latency.
The sizes of the error bars make it difficult to pinpoint a leveling off in speedup, if there is
any, over the 1 to 100 prc:essor range.
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Figure 14. Inacuvation latency as a function of the number of processars.

This measures the duration from the time that the system recei- 25 a track report for the
ume following the last report for a given track id, to the time - hen the system detects
that the track is no longer active. and asserts that coaclusion.

7.2. Effects of replication

By replicating manager nodes, we measure the impact of the number of manager
objects on performance, as measured by the confirmation latency. In one experiment we
fix the number of Radar Track Managers at 4 while we vary the number of Input Handlers.
In the other experiment we fix the number of Input Handlers at 4 while we vary the number
of Radar Track Managers.

Figures 15 and 16 show the resuits. We plot the confirmation latency versus the
number of managers, instead of against the number of processors as done in Figures 13
and 14.
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Effect of Radar Track Managers on Confirmation Latency

1001
F
> Number of Processors
a
& = 16
3 - 36
g
= % 64
d
e
2
]

10— M v T Al -

1 10
Number of Radar Track Managers
Figure 15. Confirmation latency as a function of the number of radar track

managers.

We see that replicating Radar Track Manager objects improves performance; this is
because increasing the number of processors does not improve performance in the single
Radar Track Manager case, but does in the 4 and 6 Radar Track Managers cases (see
Figure 16). Put another way, if we had not used as many as 4 Radar Track Manager
objects, then our system performance would have been hampered, and might even have
precluded the high degree of speedup displayed in the previous section. Comparing
Figures 15 and 16, we also observe that using more Radar Track Managers helps reduce
confirmation latency more significantly than using more Input Handlers.

An interesting phenomenon occurs in the 16-processor case. Although the
conclusion is not definitive given the size of the error bars, increasing the number of both
types of managers from 2 to 4 and 6 increases the mean latency. The likely cause is the
current object-to-processor allocation scheme: because each manager object is allocated to a
distinct processor, increasing the number of manager objects decreases the number of
processors available for other types of objects. Given our allocation scheme (described
more fully in Section 8.2), using more managers in the 16-processor case may actually

impede speedup.
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Effect of Input Handlers on Confirmation Latency
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Figure 16. Confirmation latency as a function of the number of input handlers.

The optimal number of manager objects appears tc sometimes depend on the
number of processors. For Radar Track Managers, 2 or 4 managers is best for the 16-
processors array, and 4 or 6 managers is best for the 36 and 64-processor arrays. For
Input Handlers, the number of managers does not appear to make much difference, which
suggests that Input Handlers are less of a throughput bottleneck than Radar Track
Managers. This suggests that in practice it will be necessary to consider the intensity of the
managers’ tasks relative to the total task in order to make a program work most efficienty.
Overall these experiments confirm that replicating objects appropriately can improve
performance.

7.3. Less than perfect correctness

Our Lamina program occasionally fails to confirm a track that our reference solution
properly confirms. This arises because the concurrent program does not always detect the
first occurrence of a report for a given track in the presence of disordered messages. We
notice the following failure mechanism. Suppose we have a track consisting of scantimes
100, 110, 120, ..., 150. Suppose that the rate of data arrival is high, causing message
order to be scrambled, and that reports for scantimes 110, 120. and 130 are received before
the report for 100. As implemented, the Radar Track object notices that it has sufficient
number of reports (in this case three), and it proceeds to compute a straight line through the
reports. When a report for scantime 140 or higher is received, it is tested against the
computed line to determine whether a line-check failure has occurred. Unfortunately, when
the report for scantime 100 eventually arrives, it is discarded. It is discarded because the
track has already been confirmed, and confirmed tracks only grow in the forward direction.
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Figure 9 reveals why this error causes discrepancies between the Lamina program
and the reference serial program: the handle track operation in the Lamina program is given
a different set of reports comga.red to the reference program, leading to a different best-fit
line being computed. To be certified as correct, we require that the reports contained in a
confirmed Radar Track Segment must be identical betwecn the Lamina solution and the

reference soluton.

The lesson here is that message disordering does occur, and that it does disrupt
computations that rely on strict ordering of track reports. In our experiments, the
incorrectness occurs infrequently. See Figure 17. We believe that with minimal impact on
latency, this source of incorrectness can be eliminated without significant change to the
experimental results.

Correctness vs. Number of
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Figure 17. Correctness plotted as a function of the number of processors for the
one-aircraft and many-aircraft scenarios.

7.4. Varying the input data set

The results from using the one-aircraft scenario highlight the difficulties in
measuring performance of a real-time system where inputs arrive over an interval instead of
in a batch. Before experimentation began, we hypothesized that the amount of achievable
speedup from additional processors is a function of the amount of parallelism inherent in
the input data set. The results relative to this hypothesis are inconclusive. Figure 18 plots
the confirmation latency against the number of processors for two input scenarios, the
many-aircraft scenario (30 racks per scan) and the one-aircraft scenario (1 track per scan).
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Figure 18. Confirmation latency as a function of the number of processors varies

with the input scenarnio.

The one-aircraft scenario displays two distinct operating modes >ne in which processor
availability and waiting time determines the latency, and anoth:r in which data can be
processed with little waiting.

The one-aircraft scenario displays interesting behavior: see Figure 18. While the
confirmation latency decreases from the 1-processor to 4-processor case, just as in the
many-aircraft scenario, there is distinctly different behavior for 16, 36 and 64 processor
cases, where the average latency is constant over this range. The key to understanding this
phenomenon is to realize that inputs to the system arrive periodically. The many-aircraft
scenario generates approximately 800 reports comprising 70 radar tracks over a 200
millisecond duration. In contrast, the one-aircraft scenario generates approximately 1300
reports comprising 70 radar tracks over an 8 second duration. Thus, although the volume
of reports is roughly equivalent (800 versus 1300), the duration over which they enter the
system differs by a factor of 40 (0.2 seconds versus 8 seconds). In terms of radar tracks
per second, which is a good measure of the object-creation workload, the many-aircraft
scenario produces data at a rate of 350 tracks per second, while the one-aircraft scenario
produces data at a rate of 8.8 tracks per second. This disparity causes the many-aircraft
scenario to keep the system busy, while the one-aircraft scenario meters a comparable
inflow of data over a much longer period, during which the system may become quiescent
while it awaits additional inputs.

The one-aircraft scenario displays two distinct operating modes: one in which
processor availability and waiting time determines the latency, and another in which data
can be processed with little waiting. For the 1-processor and 4-processor cases, the system
cannot process the input workload as fast as it enters, causing work to back up. This
explains why the average confirmation latency for the 70 or so radar tracks is nearly as long
as the scenario itself: most of the latency is consumed in tasks waiting to be executed. In
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contrast, for the 16-processor, 36-processor and 64-processor cases. there are sufficient
computing resources available to allow work 1o be handled as fast as it enters the system.
This explains why the average latency bottoms out at 18 milliseconds, and also tends to

explain the small vaniance.

Recalling that this particular experiment sought to test the hypothesis that the
amount of achievable speedup from additional processors is a function of the amount of
parallelism inherent in the input data set, we see that these experimental resuits cannot
confir. or disconfirm this hypothesis. The problem lies in the design of the one-aircraft
input scenario. The reports should have been arranged to occur over the same 20
millisecond duration as in the many-aircraft scenario, instead of over an 8 second duration.
Had that been done, the two scenarios would present to the system comparable workloads
in terms of reports per second, but would differ internally in the degree to which sub-parts
of the problem can be solved concurrently.

The distinction - veen the one-aircraft and many-aircraft scenarios can be
described in Figure 19.  .is graph is an abstract representation of Figure 12 presented
earlier, and plots the input workload as a function of ime. The many-aircraft scenario pre-
sents a high input workload over a very short duration, while the one-aircraft scenario
presents the same total workload spread out over a much longer interval. If we imagine the
dashed lines to represent the workload threshold for which an n-processor system is able to
keep up without causing waiting times to increase, we see that the many-aircraft scenario
exceeded the ability of the system to keep up even at the 100-processor ‘evel, but the one-
aircraft scenario caused the system to wansition from not-able-to-keep-up to able-to-keep-
up somewhere between 4 and 16 processors. A more appropriate one-aircraft scenario,
then, is one that has the same input workload profile as the current many-aircraft scenario.
Such a scenario would allow an experiment to be performed :hat fixes the input workload
profile, which our expenment inadvertently varied, thereby cortaminating its results.
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The workload threshold above which the work becomes incruasingly backlogged varies
according to the number of processors.

8. Discussion

This section discusses how we achieved our experimental results using the concepts
developed in Section 4. Specifically, we focus on the relationships between problem
decompositon, speedup, and achievement of correctness.

8.1. Decomposition and correctness

In this section we analyze the problem solving knowledge embodied in the data
association module. We use the dependence graph program to represent inherent
dependencies in the problem. This is contrasted with the Lamina implementation to shed
light on the rationale behind our design decisions. The goal is to identify the general
principles that govern the transition from a dependence graph program to a runnable
Lamina implementation.
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8.1.1. Assigning functions to objects

We obtained speedup from both independent handling of tracks, and possibly from
pipelining within a track, without the necessity to decompose the problem into the small
functional pieces suggested in Figures 9 and 10. One might be tempted to believe that a
direct translation of the nodes and edges of the dependence graphs into Lamina objects and
methods might yield the maximal speedup, but careful study of the dependencies in Figures
9 and 10 reveals that there is very little concurrency to be gained.

In Figure 9, the entire graph is dependent on the arrival of report Ri. For instance.
before a track is declared broken, the top-level “handle track™ graph requires the arrival of
reports R1, R2,... Rlast. The lefunost add node needs R1, and the remainder of the graph
is dependent on this node. The add node to the right of this one is dependent on the arrival
of R2, and the remaining right-hand subgraph is dependent on this node. This pattern
holds for the entire graph, implying that computation may only proceed as far as
consecutive reports beginning with R1 have arnved. Thus, little concurrency may be
gained from the “handle track™ operation; in particular, no pipelining is possible because the
entire graph receives only one set of reports, RI.....Rlast. Figure 10 is similarly
dependent on sequential processing of reports. We conclude that lumping all of the
functons of Figures 9 and 10 into a small number of objects does not incur a great expense
in concurrency. Given the overhead costs associated with message sending and process
invocation, we speculate that one or two objects might yield the best possible design. In
fact, our design uses k+2 objects, where k is the number of times a track is declared
broken; k is typically fewer than three, giving us fewer than five objects for each “handle
track” graph.

The dependence graph program provides several user .i insights regarding a good
problem decomposition. First, it justifies a decomposition that treats the “handle track”
function as primitive functon, rather than a finer-grained decot::position. Second, it clearly
shows the independence between tracks, suggesting a rciatively painless problem
decomposition along these lines. Third, it shows the need 10 maintain consistent state
about which tracks have been seen, and those which have not, suggesting a decomposition
according to track id number, which is the approach that our Lamina program takes.

8.1.2. Why message order matters

A significant part of the Lamina concurrent program implements techniques to allow
a Lamina object receiving messages from a single sender to handle them as if they were
received in the order in which they were originally sent, without gaps the in the message
sequence. By doing this, we incur a performance cost because the receiver waits for arrival
of the next appropriate message, rather than immediately handling whatever has been
received.

The dependence graphs help to justify such costs because the dependencies imply
ordering. Indeed, in preliminary work in a different framework. one author discovered that
when no explicit ordering constraints were imposed during Airtrac data association
processing, and :ither additional heuristics nor knowledge was used, incorrect
conclusions resulted in cases when the input data rate was high. The incorrect conclusions
arose from performing the line-fit computation on other repors different from the first three
consecutive reports. As such, the incorrectness reflected an interaction between message
disordering 'nsing in CARE and the particular Airtrac knowledge, rather than the specific
problem so. .ing framework. We believe, for instance, that similar incorrect conclusions
would arise in a Lamina program that did not explicitly reorder reponts.
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We emphasize that although the particular problem that we studied showed strong
correctness benefits from imposing a strict ordering of reports, this should not be
interpreted as a claim that all problems need or require message ordering. As the
dependence graphs make strikingly clear, the very knowledge that we implement dictates
ordering. Another problem may not require ordering. but require a srict message tagging
protocol, for instance. As a general approach, we believe that the programmer should
represent the given problem in dependence graph form, preferably explicitly, to expose the
required set of dependencies, and let the overall pattern of dependencies suggest the kinds
of decompositions and consistency requirements that might prove best.

8.1.3. Reports as values rather than objects

In the dependence graph program we represent reports as values sent from node to
node. Similarly, in the Lamina implementation, we use a design where reports are values
sent from object to object. This works well because reports never change, enabling us to
treat reports as values. The cost of allowing an object to obtain the value of a report is a
fairly incapensive one-way message, where value-passing is viewed as a monotonic
ransfer of a predicate. This approach works because we know ahead of time which
objects need to read the value of a report, namely the objects that constitute the processing

pipeline.

Consider a second design where reponts are represented as objects. In this scheme,
instead of a report being a value passing through a processing pipeline, we arrange for read
operations to be applied to an object. Conceptually these are identical problems, the only
difference being the frame of reference. In the first case, the datum moves through
processing stages requiring its value. In the case being considered here, the datum is
stationary, and it responds to requests to read its value. This 1s atrractive when it is not
known in advance which objects will need to read its value. The penalty is an additional
message required to request the object’s value, and the associ..ted message receipt system
overhead.

A third design represents reports as objects, but replaces the read message in the
previous design with a request to perform a computation, and uses the object’s reply
message to convey the result of the computation. By arranging a set of reports in a linear
pipeline, we can allow the first report to send the results of its computation to the second
report, and so forth. This design is the dual of the first design because in this design we
send a sequence of computation messages through a pipeline of report objects, whereas in
the first design we send a sequence of report value messages through a pipeline of
computing objects. The designs differ in the grain-size of the problem decomposition;
since our problem has a small number of computations and a large number of reports, the
first design yields a small number of computing objects with many reports passing
through, whereas the third design yields a large number of objects with a small number of
computation messages passing through.

In our design, namely the first design discussed, we choose to represent reports as
values sent to successive objects in a processing pipeline because our problem
decomposition tells us in advance the objects in a pipeline. Using this design minimizes the
number of messages required to accomplish our task, and uses a larger grain-size compared
to its dual.

8$.1.4. Initialization

Our approach to initialization embodies the correctness conditions of Schlichting
and Schneider. Formally, we combine the use of monotonic predicates and predicate
transfer with acknowledgement.
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During initialization of our application, we create many objects, typically managers.
At run-time, these objects communicate among themselvc_s, vyhxch requires thag we collect
handles during creation, and distribute them after all creation is complete. Specifically, the
Main Manager collects handles during the creation phasc_; in essence, cacl} created object
sends a2 monotonic predicate to the Main Manager asserting the value of its handle. The

invariant condition may be expressed as follows:

Invariant (asserting own handle): “handle not sent” or “my handle is X"
The Main Manager detects the fact that all creation is complete when each of the
predetermined number of objects respond; at this point, it distributes a table containing all
the handles to each object. It waits until an acknowledgement is received from each object
before initiating subsequent problem solving activity. This is important because if the
Main Manager begins too soon, some object might not have the handle to another object

that it needs to communicate with. In essence, the table of handles is asserted by a
predicate transfer with acknowledgement. The invariant condition is described as follows:

Invariant (distributing table of handles):
“table not sent™
or “problem solving not initiated”

or “all acknowledgements received”

Main-manager
return
_—_ own handle
initiate Input-simuiator D
node
creation
input-handler-1 Input-handier-m >
[ X N ]
RTMgr-1 b RTMgr-n >
[ N N
Figure 20. Creating static objects during initialization.

Correctness is crucial durng initialization because a missing or incorrect handle, or
a missing or improperly created object causes problems at run-time. These problems can
compound themselves, causing performance or correctness degradation to propagate. By
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using an initialization protocol that is guaranteed to be correct, these problems may be
avoided.

8.2. Other issues
8$.2.1. Load balance

We define load balance as how evenly the actual computational load is disaibuted
over the processors in an array over time. Processing load is balanced when each
processor has a mix of processes resident on it that makes all the processors equally busy.
If a balanced processing cannot be achieved, the overall performance of a multiprocessor
may not reflect the actual number of processors available to perform work due to poor load
balance. In our experimentation, we discovered the critical importance of a good 1nad
balance algorithm.

We encountered two kinds of problems. The first problem deals with where to
pla.. a newly crc.ated object. Since we want to allocate objects to processors so as to
evenly distribute the load, and because we want to avoid the message overhead associated
with a centralized object/processor assignment facility, we focused on the class of
algorithms that make object-to-processor assignments based on : cal informaton available
to the processor creating the object. The second problem deals with how objects share
limited processor resources. It turns out, for instance, that exremely computation-
intensive objects can severely impair the performance of all - er objects that share its
processor.

At one point in our experimentation, for instance, we observed a disappointing
value of unity for the Sgg/16 speedup factor, where we ins::ad expected a factor of 4.
Moreover, we noticed an extremely uneven mapping of processes to processors: the
approximately 200 objects created during the course of proble solving ended up crowded
on only 14 of the 64 available processors! The culprit was the algorithm that decided
which reighboring processor should be chosen to place a new object. The algorithm
worked as follows. Beginning with the first object created by the system, a process-local
dara structure, called a locale, is created that essentially records how many objects are
already located at every other processor in the processing array. When a new process is
spawned, the locale data structure is consulted to choose a processor that has the fewest
existing processes. This scheme works well when a singie object creates all other objects
in the systern; unfortunately in Airtrac many objects may create new objects.

Given the locale for any given process, when the process spawns a new process,
we arranged for the new process to inherit the locale of its parent. The idea is that we want
the new process to “know” as much as its parent did about where objects are already placed
in the array. This scheme fails because of the ee-like partern of creations. Beginning with
the initial manager object at the root of the tree, any given object has inherited a locale
through all of its ancestors berween itself and the root. Therefore the locale on a given
object will only know about other objects that were created by the ancestors of the object
before the locale was passed down to the next generation. Put another way, the locale on a
given object will not reflect creations that were performec 2 non-ancestor objects, or
creations that were performed on ancestor objects after the ic.ale was passed down. This
leads to extremely poor load balance.

The same problem occurs even if we define a single locale for each processor that is

shared over all processes residing on that processor. Unfortunately, that locale will only
know about other objects that were created by objects residing on that processor. That is,
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the locale on a given processor will not reflect creations that were performed by objects that
reside on other processors.

In contrast, ideal load balance occurs when each object knows about al creations
that have taken place in the past over the entire processing array. This ideal is extremely
difficult to achieve. First, we want to avoid using a single globally-shared data structure.
Second, finite message sending time makes it impossible for many objects performing
simultaneous object creation to access and update a globally-shared structure in a perfectly
consistent manner.

We changed to a “random” load balance scheme which randomly selected a
processor in the processing array on which to create a new object [Hailperin 87]. Running
the base case on a 64 processor array with approximately 200 objects, we managed to use
nearly all the available processors. Processor utilization improved dramatically.

Random processor allocation gave us good performance. In fact, we can argue
from theoretical grounds that a random scheme is desirable. First, we deliberately
constrain the technique to avoid using global information that would need to be shared.
This immediately rules out any cooperative schemes that rely on sharing of information.
Second, any scheme that artempts to use local information available from a given number of
close neighbors and performs allocations locally faces the risk that some small
neighborhood in the processing array might be heavily used, leaving entire sections of the
array underutilized. We are left therefore, with the class of schemes that avoids use of
shared information but allows any processor to select any other processor in the entire
array. Given these consmaints, a random scheme fits the criteria quite nicely and in fact
performed reasonably well.

Further experimentation revealed more problems. Manager objects have a
particularly high processing load because a very small numbe: of objects (typically S to 9)
handles the entire flow of data. When a non-manager objects happens to reside on the
same processor as a manager object, its performance suffers. For example, a Radar Track
object is responsible for creating a Radar Track Segment object. and the time taken for the
create operation affects the confirmation performance. Unfortunately, any Radar Track
object that happens to be situated on the same processor as a manager object (e.g. Input
Handler, Radar .rack Manager) gets very little processor time, and thereby contributes
significant crearion times to the overall latency measure.

Whereas in the random scheme the probability that a given processor will be chosen

for a new object is -r!;for n processors, our modified random scheme does the following:

« If there are fewer statc objects (e.g. managers) than processors, then place static
objects randomly, which can be thought of as sampling a random variable withour
replacement. Place dynamically created objects uniforrnly on the processors that
have no stadc objects. this time sampling with replacemen.

» If there are as many or more static objects than processors, then place roughly
equal numbers of static objects on each processor in the array. Place dynamically
created objects uniformly over the endre array, sampling with replacement.

This scheme keeps the high processing load associated with manager objects from
degrading the performance of non-manager objects. This scheme performs well for our
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cases. We typically had from 5 to 9 static objects, approximately 150 dynamic objects, and
from 1 to 100 processors in the array.

There are other considerations that might lead to further improvement in load
balance performance that we did not pursue. These are listed below:

« Account for the fact that not all static objects need a dedicated processor. (In our
scheme, we gave each static object an entire processor to itself whenever possi-
ble.)

e Account for the fact that a processor that hosts one or more static objects may
stll be a desirable location for a dynamically created object, although less so than
a processor without any static objects. (In our scheme, we assumed that any
processor with a static object should be avoided if possible.)

* Relocate objects dynamically based on load information gathered at run-time.

8.2.2. Conclusion retraction

This section explores some of the thinking behind our avproach toward
consistency, which is to make conclusions (e.g. confirmation, macuvanon) only when thcy
were true. This is an extremely conservative stance, and possibly incurs a loss in
concurrency and speedup. An alternative approach which mnght allow more concurrency is
to make conclusions that are not provably correct: the programmer would allow such
conclusions to be asserted, reracted and reasserted freely until a commitment regarding that
conclusion is made. Jefferson has explored this compuational paradigm, known as virtual
time [Jefferson 85). The invariant condition describing the tr:th value of a conclusion P
under such a scheme is shown below:

Invanant: “no commimment made” or “P is rue”

In essence, this invariant condition says that the program may assert that P is true, but there
is no guarantee that P is wue unless it is accompanied by a commitment to that fact. The
benefits of such an approach is that assertions may precede their corresponding
commutments by some tme interval. This interval may be used 1) by the user of the system
in some fashion, or 2) by the program itself to engage in further exploratory computation
that may be beneficial, perhaps in reducing computation later. In Airtrac-Lamina, we did
not investigate the benefits from exploratory computation.

For the user of the system, he or she must decide how and when to act upon
uncommitted assertions rendered by the system. On one hand, the user could view
assertons as true statements even before a commitment is made. with the antcipation that a
retraction may be forthcoming. On the other hand, thr user could vic .v an assertion as true
only when accompanied by a commitment; this latter approach places emphasis on the
commianent, since only the commitment assures the truth of the conclusion.

We decided against using the scheme outlined here. As a technique to allow
concurrent programs to engage in exploratory computations, there might be some merit if
the power of such computations can be exploited. As alogical statement to the user of the
system, such an uncommined conclusion is meaningless. since it may later be retracted. As
a probabilistic statement to the user of the system, a conclusion without commitment might
indicate some likelihood that the conclusion is true. However, we believe that a better way
to handle probabilistic knowledge is to state it directly in the problem rather than in the
consistency conditions that characterize the solution technique. This unclear separation
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between domain knowledge and concurrent programming techniques steered us away from
the approach of making assertions with the possibility of subsequent retraction.

9. Summary

Lamina programming is shaped by the target machine architecture. Lamina is
designed to run on a distributed-memory multiprocessor consisting of 10 to 1000 proces-
sors. Each processor is a computer with its own local memory and instruction stream.
There is no global shared memory; all processes communicate by message passing. This
target machine environment encourages a programming style that stresses performance
gains through problem decomposition, which allows many processors to be brought to
bear on a problem. The key is to distribute the processing load over replicated objects, and
to increase throughput by building pipelined sequences of objects that handle stages of
problem solving.

For the programmer, Lamina provides a concurrent object-oriented programming
model. Programming within Lamina has fundamental differences with respect to con-
venunonal systems:

« Concurrent processes may execute during both object creation and message
sending.

« The time required to create an object is visible to the programmer.

* The time required to send a message is visible to the programmer.

» Messages may be received in a different order from w hich they were sent.

The many processes which must cooperate to accomplish the overall problem-
solving goal may execute simultaneously. The programmer-visible time delays are
significant within the Lamina paradigm because of the activities that may go on during these
periods, and they exert a swong influence on the programming style.

~"ds paper developed a set of concepts that allows us to understand and analyze the
lessons that we leamed in the design, implementation, and execution of a simulated real-
dr-e applicauon. We confirmed the following experimental hypotheses:

* Performance of our concurrent program improves with additional processors, we
attain significant levels of speedup.

» Correctness of our concurrent program can be maintained despite a high degree of
problem decomposition and highly overioaded input data conditions.

An inappropriate design of our one-aircraft scenario precluded us from confirming
or disconfirming the following experimental hypothesis:

+ The amount of speedup we can achieve from additional processozs is a function
of the amount of parallelism inherent in the input data set.

In building a simulated real-time application in Lamina, we focused on improving

performance of a data-driven problem drawn from the domain of real-time radar track
understanding, where the concern is throughput. We leamed how to recognize the
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symptoms of throughput bottlenecks; our solution replicates objects and thereby improves
throughput. We applied concepts of pipelining and replication to decompose our problem
to obtain concurrency and speedup. We mqmtamcd a high level of correcmess by applying
concepts of consistency and murual exclusion to analyze and implement the tccquucs of
monotonic predicate and predicate transfer with acknowledgements. We recognized and
repaired load balance problems, discovering in the process that a modified random
processor selection scheme does fairly well.

The achievement of linear speedup up to 100 times that obtainable on a single
processor serves as an important validation of our concepts and techniques. We hope that
the concepts and techniques that we developed, as well as the lessons we learned through
our experiments, will be useful to others working in the field of symbolic parallel
processing.
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Abstract

This paper describes the desire to speed up programs in the field of Artificial Intelligence
through the use of parallel hardware architectures and why this objective is not a simple one to
achieve.

Poligon, a system designed to investigate ways to mount Artificial Intelligence programs on
parallel hardware, is described, experiments performed to date on this system are described and
tentative results are given.

Achieving useful speed-up has proven very difficult. These difficulties are enumerated and
explained.

1. Introduction

The domain of supercomputing has traditionally been very large regular problems. This has
been driven by two main forces;

« A large class of important problems were soluble by existing programming technol-
ogy but were intractable with "normal” processors, e.g. PDE solution, finite element
analysis or simulation.

« Early programming languages focused on Arrays as data structures, whose use could
efficiently use the hardware available. This led to the idea of vector and array
Processors.

It is, therefore, by no means a coincidence that the sort of problems that tend to use existing
supercomputers are those problems best suited to supercomputers.

The field is changing now, however. This is driven by two main forces;

o Developments in hardware technology now allow the development of multiprocessor
systems composed of large numbers of relatively simple processors, which are
potentially more cost effective than existing super-complex supercomputer
uniprocessors.

o Both hardware and software technologies have progressed to a point where a number
of problems which have become soluble by means of symbolic programming would
now like a slice of the speed-up cake.

Symbolic computation has for a long time been accused of inefficiency. Recent develop-
ments in compiler and hardware technologies, however, have allowed the development of high
performance uniprocessor workstations for the execution of symbolic programs. These have
shown that there is a large class of "Artificial Intelligence” (AI) problems for which sig-
nificantly greater computational resources will be needed to make these problems worth ad-
dressing. This has focused the attention of A and symbolic programming research on the ex-
ploitation of parallelism.

The sort of problem currently applied to supercomputers is very crystalline [Seitz 85] in na-
ture. This means that a relatively small "inner loop” of the comp::tation can be vectorized in
order to exploit existing supercomputer hardware [Kuck 81]. Simiiirly such problems can of-
ten exploit parallelism at a finer grain in a systolic manner [Kung 78].

Al problems have none of these useful characteristics [Lee 85]. This paper describes first
what is meant by "Problem-Solving" and how this relates to parallelism (§2). It goes on to
describe Poligon [Rice 86] a system implemented in order to investigate the potential for
speed-up of a class of A/ applications called "Blackboard Systems" through parallelism (§3).

l‘T‘l’cis paper also appears in the proceedings of the Third International Conference on Supercomputing, May 1988
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After this some preliminary experiments and what we have learned from them and discussed

(54).

2. Parallelism and Problem-Solving

In this section we examine what is meant by "Problem-Solving"”, contrasting it with common
supercomputing doctrine and concerns. This will show why it is that a different approach to
parallelism than is taken by conventional programs is necessary in A/ and also why it is so
hard to achieve.

2.1. What is "Problem-Solving"?

Questions are never indiscreet. Answers sometimes are. - Oscar Wilde, "An Ideal Husband"

"Problem-Solving” was ofter. taken to refer to the process of searching a tree or graph of al-
ternative solutions. "Knowledge” is that which allows the program to eliminate searching parts
of the tree. For instance, a chess playing program might have a tree made of all of the legal
moves at any given point2. The term "Knowledge” will always be used in this sense in this
paper. The application of strategic Knowledge, such as Knowledge about chess end games, to
each generated node in the tree would point out to the system likely candidate paths to follow.
The method of constructing all legal possibilities at any given leaf of a dynamically generated
tree and then testing them to determine whether they are possibilitiess worth following is
usually referred to as the "Generate and Test” method. It is an axiom of such systems that the
more Knowledge there is the less blind search has to be done - the more efficiently the tree is
pruned.

The focus of much A/ research is on the use of Knowledge to reduce or obviate search. This
is because such searches are expensive and combinatorial processes. The use of Knowledge in
this way might not be the best solution for the future since the use of highly parallel architec-
tures to evaluate multiple alternatives might be faster than executing this highly specialized
Knowledge. What is more, this could also save the human cost of acquiring and encoding such
Knowledge. The acquisition of Knowledge is generally thought to be one of the major
obstacles in the way of the more general application of A/ systems to real-world problems.

The important thing, for the purpose of this paper, about problem-solving systems and the
problems that they address is that they are structurally different from "conventional" programs.
Throughout this paper the terms "Problem-Solving” and "Al system" will be used to describe
these systems. The term “"Conventional” will be used to describe existing practice in the super-
computer world. Some of the characteristics that make such a problem different from a con-
ventional programming problem are listed below.

o The problem itself is often ill-defined.

o There is often more than one possible solution. This means that a satisficing?,
rather than an optimal solution is usually the “"right” answer. This is quite unlike
most conventional programs for which there is one and only one right answer,
within the margin of error of the system*.

» The paths to a solution cannot predefined in such systems. Possible solution paths
must be dynamically generated and tried.

2Clc:arly this tree cannot be fully instantiated with the resources available in the universe.

3A solution that is said to be “good enough.”

‘Linur optimization is a notable exception to this. Clearly many programs use heuristics and so the distinction

made here is simply one of degree. A/ problems are usually composed of a larger proportion of heuristics than con-
ventional programs.
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o The structure of such programs differ frqm conventional programs in three fun-
damental ways; in their data structures, their control flow and their control struc-
tures.

Data Structure It is generally the case that the data upon which the system has to
operate cannot be encoded simply into an array. This is because
such data structures are usually highly complex and often cyclic
graphs, which are created dynamically, thus precluding static al-
location and optimization.

Control Flow The solution to the problem is not regular, which is to say that
the behavior of the problem-solver is typically very data-
dependent. In a PDE solving program, for instance, the computa-
tional demands of the system at any point are well understood.
This is because well defined and well understood algorithms are
used and the computational demands of matrix inversion, for ex-
ample, are reasonably easy to estimate. This is not the case in 47
programs. Apparently trivial changes to the source data can cause
huge changes to the computation performed. As an example of
this one might consider the behavior of a chess program when the
opponent elects to make an unexpected move. What is more, the
code generated for these programs is usually very branchy [Lee
85], thus reducing the benefits of fine grained pipe-lining.

Control Structures

The Knowledge that A/ programmers try to encode in their
programs is usually functionally different from that Knowledge
which is usually encoded in conventional programs. That is to
say it is more likely to be a high-level specification of the in-
tended behavior of the system, as opposed to a set of instructions
for how to compute the answer. Such details are usually left to
the system. For instance, the program might be compiled into a
set of assertions and rules in a Prolog system [Clocksin 81]. The
program itself is executed indirectly through a virtual machine
which interprets these specifications as its instructions. This
results in most of such programs not being amenable either to
existing vectorizing algorithms or to the application of well
defined algorithms>.

The factors mentioned above result in A/ problems not having the properties needed for
them to be parallelized by conventional means. This is cause for considerable concern for
those who would like to achieve orders of magnitude of speed-up for their A/ programs.

2.2. Concerns for Supercomputers

On how to trap a lion in a desert [Petard 38]: A topological method. We observe that a lion has at least
the connectivity of the torus. We transport the desert into four-space. It is then possible [Seifert 34] to
c:rryho;al such a deformation that the lion can be returned to three-space in a knotted condition. He is
then helpless.

Implementors and programmers of supercomputers have traditionally focused on the efficient
use of the hardware and the matching of the hardware to the problem. Some examples of
these are discussed below.

5Theu interpreters themselves may, however, be implemented using well understood algorithms or microcode.




2.2.1. Where does parallelism come from? ) .

Parallelism in conventional programs is either easy to get or nearly impossible. If the
program does a lot of simple operations on arrays whose dependencies and recurrences are
simple and can be unraveled then massive data parallelism® can be gxploited. It is by this
means that vector machines are able to achieve their pprformance. It is not g_eneral)y the case
that there is, qualitatively speaking, more than one thing happening at any given time. Such
programs are parallel in a SIMD sense [Flynn 72). If the control flow is too complex to
analyze then the compiler may not be able to unwind the parallelism out of the program’.

Al programs are typically short on data parallelism. There are certainly problems which have
significant data parallelism but not of the order that one might get in extremely regular, con-
ventional programs. This means that an A/ system which hopes for speed-up through paral-
lelism must be able to exploit Knowledge parallelism. It must be able to execute a significant
number of different chunks of the program simultaneously. This is MIMD parallelism. The

Poligon system described in §3 is designed to exploit this sort of parallelisms.

Most high performance processors today exploit pipe-line parallelism in the execution of in-
structions.  Pipe-line parallelism is also exploited at a somewhat coarser grain by the new
generations of multiprocessor systems such as systolic arrays. It is crucial that any system
hoping to exploit parallel hardware effectively should be able to exploit pipe-line parallelism.
This is, in fact, considerably harder in A/ systems because of the irregular structure of the
problem. The Poligon system tries wherever it can to exploit pipe-line parallelism.

2.2.2. What sort of hardware should be used?

In order to be able to exploit the parallelism in a program to the best possible degree there
must be an appropriate match between the compiled program and the target hardware. This
means that if a speed-up of no more that 10 to 20 is either hoped for or expected then the
program should probably be executed on a shared-memory multiprocessor®. If more speed-up
than this is needed then a hardware design that will scale better should be used - some form
of distributed memory architectureld. This could, in practice, have a grain size varying from
that of the Cosmic Cube [Seitz 85] to that of the Connection Machine [Hillis 85]). The
Poligon system is designed to be matched to run on a multiprocessor, which should scale satis-
factorally to the order of hundreds or thousands of processing elements, each element being a
highly competent symbolic language processor. This is the pure value passing CARE machine
model [Byrd 87], one of several CARE machine models implemented as part of the same
project of which Poligon is a part.

2.2.3. Compilation

Vectorizing FORTRAN compilers have been the main implementation language in supercom-
puting circles for quite some time. There is considerable inertia in the field in this respect.
Similarly A/ programmers are in many senses locked into the use of Lisp [Steele 84] or Prolog
[Clocksin 81] as their implementation languages. Problem-Solving systems have traditionally

6Pamllelism due to similar operations being performable on independent items of data, for instance elementwise
addition of two arrays.

"The Connection Machine [Hillis 85] is an example of an experiment to test the contrary hypothesis, that STMD
machines are, indeed, appropriate for A/ applications.

8MIMD programs typically have a set of implementation difficulties and bugs which are not so frequently seen in
SIMD programs. These are caused by having a number of radically different types of program executing, all at dif-
ferent speeds and trying to communicate with one another. This causes data to arrive "out of order” and race con-
ditions. Many of the pit-falls of paralle! A/ programming mentioned in this paper are a consequence of this.

[9Some exferiments have shown rather disappointing results here, saying that this is all that can really be hoped for.
Gupta 86

1()Recem claims have been made that some shared memory architectures can scale well [ Wilson 87].
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not been very efficiently implemented, even if the underlying implementation language has
been. This is because it is expensive in human terms to implement such systems efficiently
and their typical life span has not justified this sort of optimization effort. This state of af-
fairs is beginning to change. There is now a demand for highly competent programs using A/
techniques being embedded, for instance, into military hardware. This asks not only for high
performance but also for high reliability, maintainability and modifiability. Lisp and Prolog
in their commor implementations are not languages which can easily be parallelized in the
same way that FORTRAN compilers arell. There is, therefore, a need to develop languages not
only capable of exploiting the parallelism in .forthcoming hardware but also qapable of ex-
pressing the richness of these complex symbolic programs. On top of these will need to be
built highly competent tools and frameworks which will be needed for a satisfactory parallel A/
development environment. The Poligon system is a first-cut prototype system developed with
the objective of being able to extract parallelism from programs both by the system and by en-
couraging a clear programming style and problem decomposition methodology, which leads to
more parallel programs,

2.3. Concerns for Problem-Solvers . ]
The concerns of the implementors of Problem-Solving systems are quite different from those
of supercomputer programmers. Some of these concerns are enumerated below.

2.3.1. Solution quality

As has been mentioned above, 4/ programs are generally expected to produce a satisficing
solution. This has a significant impact on the behavior of the program, since paths used to
determine heuristic solutions might be very different from those used to find analytic solu~
tions, even if analytic solutions are known.

2.3.2. Search

These heuristic programs are typically characterized by searching a great deal for patterns
over a large graphl2, This large amount of search admits both And and Or parallelism, in
principle. The Poligon system has specific mechanisms to facilitate the efficient execution of
such searches!3,

2.3.3. Coherence

The implementor of an A/ program may not be aware of the eventual behavior of his
program when he is implementing it. This is a function of the complex nature of such
problems and the fact that the paths to their solutions are not predefined. It is, nevertheless,
very important that the program reach a coherent solution, even if just a satisficing one. It is
no good if different parts of the solution space have mutually contradictory local solutions
which contribute to the overall solution. Because the Knowledge that goes into such systems is
usually implemented in distinct chunks, which may know little about the operations performed
by other such chunks, there is significant potential for the system getting confused as different
subsystems “"trample on each others' toes.” This means that it is by no means a trivial issue to
make sure that a coherent or convergent solution is achieved by Problem-Solving systems.

nlmplemenmions of both of these languages have been made with "do this bit in parallel” constructs eg. [Gabriel
84) and [Clark 85] and much work is now focusing on the automatic extraction of parailelism in these languages but
as yet no symbolic programming equivalent of a vectorizing FORTRAN compiler has been produced. This is because
it is generally not known at compile time whether any given expression is worth evaluating in parallel, given the costs
of process creation and such-like.

hnln fact this graph can be of semi-infinite size and often has to be computed on demand; cf. the game tree for a
chess game.

By search dominates the computation then massively parallel machines such as the Connection Machine [Hillis 85]
may well prove to have the best performance.




H-6

This problem is exacerbated by the asynchronous behavior which can happen in MIMD parallel
systems. The Poligon system is designed to help the programmer arrive at coherent solutions,
whilst still encouraging parallelism at a fine grain.

2.3.4. Programming . .

Heuristic programs are typically large and their Qensity is great!%. This means that their code
encapsulates a great deal of Knowledge. It is difficult to write such programs for a number of
reasons.

« It is difficult to acquire the Knowledge that goes into them, since this is typically
not encoded already in a formal algorithmic way.

« It is difficult to represent the Knowledge once it has been acquired. For instance,
the programming associated with implementing a statement such as "Control of cen-
ter is very important during openings" would be considerable.

» Good, clean implementations of such systems need to maintain the logical indepen~
dence of the Knowledge in the system. This is because failure to do so can result
in systems that are very brittle when Knowledge is executed in new orders or when
new Knowledge is added. The interconnectedness of Knowledge is often difficult to
determine when the Knowledge is formulated. Clearly having dependencies between
pieces of Knowledge could have a significant impact on the amount of parallelism
that could be extracted from such a program and on the program's ability to get the
"right” answer.

It is, therefore, a major concern of Al programmers that these programs should be easy to
implement, debug, modify and maintain.

3. Poligon a System for Parallel Problem-Solving

In this section we describe Poligon. Poligon is an attempt to produce a system which ad-
dresses the issues mentioned above to support the development of parallel A/ systems. It
represents, in many ways, an attempt to find an analogue for and implement a paraliel form of
existing A/ systems, known as Blackboard Systems [Nii 86].

A brief description of the important aspects of Blackboard Systems will be given, then
Poligon itself will be described; structurally, in the way in which it matches its problem
domain, and the way in which it is matched to its target hardware.

3.1. Blackboard Systems

Blackboard Systems are instances of a particular computational or problem-solving model
- the "Blackboard” model or metaphor. This metaphor takes as its source the idea of a collec-
tion of experts gathered around a blackboard (see Figure 3-1). Each expert has a specific
domain of expertise, which relates to how a part of the problem at hand is to be solved. Each
expert looks at the blackboard for representations of the problem which are of interest to his
specific area of expertise. Having found such a piece of information he performs whatever
operations he finds necessary and posts his conclusions on the blackboard. This new represen-

tation of part of the solution might itself be of interest to another expert and so the process
continues.

It is clear from this that the sum of the Knowledge in the system must be sufficient to con-
nect all of these areas of expertise. With less Knowledge than this the problem simply will
not be soluble. With more Knowledge than this it should be possible to achieve successively

l‘I‘l\is means that the number of executed machine instructions for each line in the source code is typically very
large.




Figure 3-1: The Blackboard Metaphor.
Eegar, uses encoded Knowledge and comes
to a startling conclusion.

higher performance from the system; be it faster solutions or better solutions.

This simple model has considerable intellectual appeal and has been the cause of substantial
research. [t is often claimed that all of these “experts” should be able to operate simul-
taneously. The Poligon system represents an attempt to test this assertion.

Blackboard systems are typically implemented as large data structures - the "Blackboard™ - in
which are stored the elements of the possible solutions, called "Nodes”, which are typically
linked together in some way to form a complex graph. There are normalily a large number of
these Nodes, representing everything from the input data through intermediate solutions to high
level abstractions of the current state of the solution. Nodes have internal structure, which al-
lows the mapping of names onto values. They are usually made up of a collection of named
"Slots" or "Fields", which contain data pertinent to the solution. The Knowledge in the sys-
tem is usually implemented as a collection of Pattern/Action "Rules" collected into groups

called "Knowledge Sources” ("KSs") [Nii 80]. These reside in an area referred to as the
"Knowledge Base" (see Figure 3-2).

3.1.1. Consistency and Coherence

Reaching the coherent solution, discussed in 52.3.3, in a Blackboard System is a function of
achieving consistency in a number of aspects:
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Blackboard Knowledge Base
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‘i Rule
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Figure 3-2: A Serial Blackboard System.
Here, the Scheduler notices a modification event
and invokes a Knowledge Source.

Node Level The program should create the right number of Nodes representing the ele-
ments in the solution and they should be connected together correctly.

Slot Level The Slots in the Nodes should contain a respectable representation of the
state of that node and its relationship to others.

Rule Execution When Rules are executed t,‘l)\ey should do so in an environment which is in-
ternally consistent. This means that any information used in the rule during
its execution should be based on a consistent snapshot of reality.

3.2. A description of Poligon

Poligon is a framework for the development of Blackboard-like applications on a (simulated)
rmultiprocessor. [t consists of:

1. A compiler, which compiles a high-level description of the Blackboard's structure
and the Knowledge to be applied by the system, to run on a distributed memory
multiprocessor.

2. A run-time system which provides a debugging and testing environment for Poligon
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programs as well as run-time support.

Both the compiler and the run-time system are thoroughly integrated with the program
development environment of TI Lisp machines, the machine on which the execution of Poligon
programs are simulated.

Serial Blackboard Systems are implemented with the Nodes being represented as records on
the Blackboard!S. The Knowledge is encoded in Knowledge Sources. These are typically com-
piled into procedures which are invoked by the Blackboard System's kernel. There is some
form of scheduler for the Knowledge, which invokes one Knowledge Source after another. The
Blackboard and the Knowledge Base both share the same address space, though they are func-
tionally distinct. Knowledge Sources are "/nvoked" (executed) as a result of changes in the
Blackboard placing that change event in a queue used by the scheduler. The scheduler
repeatedly picks a Knowledge Source which is interested in the type of event at the end of the
queue.

Rules Node

<4

Rules Node

Processing Element

////// 7

I

N

DLLLLIMIBINY

DY

4_.

——— ——

\ //////7//////%

Rules Node Node Rules

YERES

AN

LUNMN)

Figure 3-3: Poligon's Blackboard.
Nodes are seen linked together being watched
by Rules, waiting for modification events.

The design of .. igon has been motivated by the idea of trying to eliminate the bottlenecks
that would be experienced if an existing, serial Blackboard System were to be parallelized by

lsThescz records might well be Pascai-like records or instances of some Class in the native system’s object-oriented
package.
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the inclusion of “do this bit in parallel” constructsl®. The major changes from this model are
listed below.

» The scheduling queue of a serial system is eliminated altogether in.l_’oligon. This
means that concurrent attempts to invoke Rules are not held up waiting for access
to this shared data structure.

. Having a Knowledge Base, which is logically distinct from the Blackboard, is no
longer necessary since there is now nothing to get between them to control the ap-
plication of the knowledge. This allows all Knowledge to be attached to those
Nodes that are interested in the Knowledge by the compiler (see Figure 3-3).

These changes eliminate at one stroke the bottlenecks of the shared scheduler and the
Knowledge Base to Blackboard interface. These changes allowed the development of the idea
of the "Node as a processor” metaphor for parallel Blackboard systems.

Having eliminated the scheduling mechanism, however, one needs some means of determining
when a certain piece of Knowledge should be invoked. It would be hopelessly inefficient to
have all of the Knowledge executed all of the time, since most of the time it would find itself
inapplicable. It was decided that a simple daemon-driven approach would be used to avoid
this problem. This results in the Knowledge being directly sensitive to changes in the Black-
board and able to act immediately upon any such changes.

Existing Blackboard Systems often express the Knowledge in their Knowledge Sources as col-
lections of Pattern/Action Rules. These are normally executed serially, in the lexical order in
which they are defined. Poligon on the other hand compiles Knowledge Sources away all
together, allowing their constituent Rules to be executed in parallel.

The "Node as a processor" metaphor is itself a major step away from the normal means of
implementing Blackboard Systems. This, however, is not enough. This would give us data
parallelism, resulting from the large number of Nodes in the system being able simultaneously
to execute Rules, whilst still failing to exploit the potential Knowledge parallelism. This is be-
cause each processing element is a uniprocessor, clearly capable of executing at most one Rule
at a timel”. Poligon, therefore, goes beyond this simple model to one which would more ac-
curately be called the "Rule invocation as a process” model. This allows the Poligon system to
distribute concurrent Rule invocations to different processing elements (see Figure 3-4.

The elimination of serializing components in a Blackboard system also eliminates those
mechanisms which are normally used to preserve coherency in the solution. Clearly there is a
trade-off which can be made between the amount of control and coherency preserving
mechanisms and the amount of exploitable parallelism. Poligon is an experiment to explore
one extreme of this spectrum. It remains to be seen whether the trade-off made in Poligon
results in an overall improvement in system performance.

3.3. How Poligon matches the problem domain

Poligon is not a general purpose programming language, other than in the Turing Complete
sense [Turing 36]. It is specialized to support one computational model and that computa-
tional model, itself, has limitations on its sphere of reasonable applicability. It has been
designed with applications such as real-time signal understanding and data fusion in mind,
though applications outside this domain are being investigated.

The structure of the problem domain is one that requires the representation of a large num-

16The CAGE system [Aiello 86] is an example of a considerably more conservative approach to the parallelizing of
Blackboard Systems.

1"Each element allows multiple processes but only one is executed at any time.

f___—
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Node Rules

Pipe —
Update

Node Rules Node Ruies
Updm/ — _
Update

Figure 3-4: Poligon's Execution model.
An update to a Node triggers concurrent Rule
invocations, which in turn update other Nodes.
Pipes are formed as changes to the Blackboard
flow from one Node to another.

ber of distinct entities in the solution space. For example the vocabulary of the probiem
domain is full of such things as aircraft, radar emitting platforms and radar track segments.
Poligon provides a rich representation language in which these objects and specializations of
them can be expressed. This allows the system to take full advantage of the mutual indepen-
dence of any of the objects in the solution space to exploit parallelism.

3.4. How Poligon matches its target hardware

Poligon could, of course, run on any machine in principic. In practice, however, it has been
designed with a particular kind of machine model in mind and has been optimized to take ad-
vantage of it. This class of target machine, which was briefly described in §2.2.2, is ex-
emplified by certain kinds of message-passing, distributed-memory multiprocessors. The grain
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size of the executable chunks in Poligon programs is designed to suit this model, i.e. each
chunk represents, ideally, a few function calls. This makes it coarser grained than those sys-
tems that want to execute everything that can be in parallel, for instance data flow machines
[Dennis 80], but it is a lot finer grained than most other concurrent Blackboard Systems, such
as [Lesser 83] in which each processing element contains a complete Blackboard System.

The target machine model, being of the distributed-memory, message-passing variety includ-
ing essentially no capability to pass references, strongly discourages shared variables or mutgble
global data of any sort and encourages a message-passing style of programming. 'The !’ollgon
language is one in which the programmer is given an abstract view of programming using the
Blackboard Problem-Solving model. The Poligon language has no construct for message send-
ing at all, nor has it any primitives by which the user has access to the underlying.architecture
or topology. It is assumed to be the duty of the Poligon system or the target machine's operat-
ing system to look after such concerns. The Poligon compiler compiles its programs into the
message passing primitives of the underlying system. This allows the efficient use of the un-
derlying architecture, whilst still leaving the source program uncluttered by concrete details of
the target architecture,

Poligon allows only global constants, but not variables, since these can be distributed at
program load-time.

3.5. What we have learned

Truth comes out of error more easily than out of confusion. - Francis Bacon

Experiments with Poligon are by no means complete, but we have learned quite a bit so far.
Some of these lessons are enumerated below.

» It is very hard to write any program which implements either a framework, such as
Poligon or an application such as those which have been mounted on Poligon. This
is due largely to asynchronous side effects. A system with better formal properties
would be less error prone in this respect but might well make less efficient use of
the hardware. These difficulties could also be caused by an insufficiency of
mechanisms to control coherency in Poligon see §3.1.1.

« In order to produce a reliable program it is necessary to write code which makes no
assumptions about anything that any other part of the system might be doing.
Failure to do so results in brittle systems.

o In order to achieve a coherent solution it was found to be necessary to develop a
number of programming methodologies. These will be covered in the same form as
they were introduced in §3.1.1.

Node Level The creation of Nodes is tricky. Because each element is likely to
represent some real-world object, such as an aircraft, it is impor-
tant either to provide a mechanism for resolving the conflict
caused by multiple asynchronous requests to create an element
that represents the same thing or to provide a mechanism for
mana%ing the creation of Nodes. Poligon opts for the latter ap-
proach.

Slot Level The programmer should cause each Node to have an idea of how
to improve its own idea of the solution - to have Goals. In
Poligon this is done at a fine grain, with each field of each ele-
ment in the solution being able to have associated with it func-
tions which enable it to evaluate itself. This state of affairs has
been observed in a different manifestation at a larger grain size
in [Corkill 83].

It was found that a good axiom for programming these systems is
“"Never throw away any data unless you are convinced that you
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have better data." This is the sort of behavior that is used in the
evaluation functions mentioned above.

Rule Execution Poligon attempts to maintain the smallest critical sections pos-
sible. The original implementation of Poligon in fact had as its
only atomic actions reading a field and writing a field. It was
soon found that, in order to maintain consistency during rule ex-
ecution, it had to be possible to read the values from a number
of fields simultaneously - taking a snapshot without the subject
moving. This, coupled with critical sections for the writing of
collections of values, allows confidence that the picture that one
sees when taking such a snapshot of a Node is consistent, even if
not necessarily the most up to date. It is important for a Poligon
programmer to be aware that the Node of which a snapshot has
been taken may well be read from and written to by other Ruies
asynchronously during the invocation of the Rule taking the
snapshot.

4. Experiments
In this section we describe, briefly, a series of experiments being performed by the Advanced
Architectures Project at Stanford University on the Poligon system and on CAGE [Aiello 86]

and Lamina [Delagi 86], other systems developed as part of the same project. However, these
experiments will be discussed only in the context of the Poligon system.

It would be premature to quote any hard and fast performance figures here, since we still
have much to do in order to understand the results that we are getting. The main purpose of
reporting these experiments is to show the lessons that have been learned both from perform-
ing the experiments and about the ways in which Poligon behaves.

4.1. The Problem
Each of the systems mentioned above has been used to implement an application called

"Elint", a problem in the domain of real-time interpretation of passive radar signal data
[Brown 86].

The problem is one of receiving reports from radar systems, abstracting these into hypotheti-
cal radar emitting aircraft and tracking them as they travel through the monitored airspace.
These aircraft are themselves abstracted into clusters - perhaps formations - which are them-
selves tracked. The nature of the radar emissions from the aircraft are interpreted in order to
determine the intentions and degree of threat of each of the clusters of emitters.

The Elint application has a number of characteristics which are of significance.

o The system must be able to deal with a continuous data stream. It is not acceptable
to wait until all of the data has been read in and then figure out what is going on.

o The application domain is potentially very data parallel. The ability to reason
about a large number of aircraft simultaneously is very important. What is more,
the aircraft themselves, as objects in the solution space, are quite loosely coupled.

o The application is Knowledge poor. This means that the experiments performed
were gear-1 primarily to evaluating the performance of these systems with respect
to data parallelism, not knowledge parallelism.
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4.2. The Purpose of the Experiments

Napoleon: "I see no mention of God."

Laplace: "/ had no need of that hypothesis.”
These experiments have five main objectives.

1. To investigate methods of achieving speed-up for expert systems applications by
mounting them on parallel hardware architectures!8,

2. To build a number of systems using different computational and problem-solving
models and compare their relative performance and thus to deduce an appropriate
course for future research. It is therefore imperative that, to the greatest degree
possible, each of the systems should implement the same application and should
perform the same experiments.

3. To perform experiments on individual systems specialized to investigate characteris-
tics of each computational model, which might not be shown by the experiments
mentioned above and which are not shared by other systems.

4. Having done the above, it should be possible to draw some conclusions about the
amount of speed-up attainable given these architectures. This should help one to
conclude whether these architectures are in fact appropriate and efficient for paral-
lel implementation.

5. The implementation of the Elint system in Poligon was intentionally not tuned.
This means that it was a copy of the original serial implementation modified only
in so far as it was necessary in order to make it solve problems correctly in paral-
lel. The intent was to achieve a reasonable measure of the performance of an
average system that might be written by a Poligon user, as opposed to a very highly
tuned version.

4.3. A Description of the Experiments performed on Poligon

Deciding exactly which experiments to perform is difficult, since there are a very large num-
ber of variable factors in the system. Amongst these are; the implementation of the Elint sys-
tem, the characteristics of the data sets used and numerous machine simulation parameters in-
cluding processor and communications network performance. However, it was decided to freeze
most of these and perform a number of experiments, having chosen "reasonable”, justifiable
values for the frozen parameters. We have, in fact, learned a lot from this process and this
has helped us to design a better set of experiments, which are now being performed.

The primary variable factor for these experiments is the data set used to drive the experi-
ment. This data set represents a simulated set of radar observations. These data sets are of

finite length. The length, number of simulated emitters and radar observation frequency over
time!% are the main variable factors in the data sets.

To perform each of these experiments the simulated rate at which data arrived in the system
was fixed at a value which was high enough to prevent data starvation when running the ex-
periment on the largest reasonable processor grid. This meant that the speed-up for a grid of
size N could be measured simply by dividing the time taken for the grid of size 1 by the time
taken by the simulation of the N sized grid.20

18"Expe:rt Systems” are A7 systems which attempt explicitly to encode the Knowledge of human experts,

19Radar system reports per simulated time unit

2oPert‘orming evperiments in this way was intended to give a base-line set of results of the same form as those
derived from th. CAOS system's im’?Iementation of Elint [Schoen 86] and of the Lamina implementation of Airtrac,

another application [ Nakano 87). For the reasons mentioned in this section this might not be a good base-line for
comparison.




H-15

It should be noted that these early experiments are open to some criticism as being unrealis-
tic. They represent the speed-up for given programs under some fixed condmons: The con-
ditions that are fixed may not be reasonable. For instance, if the program being run was
merely a parallel implementation of Quicksort then these would be reasonable experiments.
Unfortunately, because the implementations of Elint are intended to be real-time?! systems it
is not realistic to load the system in this way. The problem-solving behavior of the system is
sensitive to machine load. Systems running with smaller numbers of: processors will be more
heavily loaded. They may, therefore, spend a lot of time queue thrashing.

For this reason it is now known that these experimental results should not be taken at face
value. More satisfactory experiments have been devised, in which the experiment is run for a
given number of processors with the data rate being varied until the latency of the output
traces is constant over time. This means that the maximum sustainable data rate without in-
creasing latency in the system's outputs is the preferred measure of the speed-up for these sys-
tems.

4.3.1. Experiment 1

The Fusion Plasma requires a temperature of 500 million degrees, but I forget whether that's Cen-
tigrade or Absolute. - Overheard by Arthur H. Snell, Oak Ridge National Laboratory.
This experiment was intended to be a simple cross comparison experiment, performed by all
of the systems. Its data set was a simple, and quite small one, which contained observations of
sufficient variety to exercise all of the system’s required behavior.

The speed-up figures produced showed a peak speed-up for the system of about 4.5X for
sixty-four processors, with the speed-up trailing off quite sharply. This was disappointing.

One of the problems with this experiment was that the data set was varied in the frequency
of input data for the system over time. It was sparse at the beginning, heavy in the middle
and sparse at the end. This resulted in the system being data starved near the beginning of the
simulation and then flooded in the middle.

Although such spikes in input data are entirely characteristic of real data, this extra variable
factor was thought to be too difficult to factor out, in order to arrive at a realistic speed-up
figure. If the systom is lightly loaded then not much speed-up is needed. For this reason all
subsequent experiments have been and will be performed on data sets that have a constant fre-
quency of input data.

The most important thing to conclude from this result is that we had much to learn about
how to conduct these experiments.

4.3.2. Experiment 2

This experiment was designed to compensate for the variability found in the data set used in
Experiment 1. The data set had a constant frequency for input data over time.

This experiment showed that the peak speed-up had increased to about 7X, which was
reached after sixteen processors. This result was somewhat better than that from Experiment 1],
supporting our hypothesis that the shape of the input data was affecting our results. Analysis
of the instrumentation indicated that the limiting factor in the parallelism detected was prob-
ably a bottleneck on a particular Node representing a cluster of emitters. It also showed that
even if all bottlenecks were eliminated, so that all pipes were balanced, a major limiting factor
in the performance of the system was that there wasn't enough parallelism at this grain size
available in the data set for this system to exploit.

ZI"Rul-Time" is used here in the sense that the system must cope with an unbounded continuous stream of data,
whiist delivering results reasonably promptly. It is not intended to refer to those real-time systems where guaranteed
response times might be required.
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4.3.3. Experiment 3 ' o ) )

This experiment was intended to determine how efficiently the simulated hardware architec-
ture was being used and thus show where effort would best be expended to speed up the system
if the application could not be changed structurally. To achieve this Experiment 2 (see §4.3.2)
was repeated a number of times but for each iteration the simulated speed of the processor was
varied. This gave speed-up figures for processor performances which were 2, 4 and 8 times the
speed of the processor simulated in Experiment 222, All of the speed-up figures produced were
then normalized against the case of Experiment 2. A significant reduction in the speed-up of
the system would have indicated that the increasing performance of the processor was swamp-
ing the communication hardware, thus indicating that time and effort would better be spent on
improving communication performance.

It was found that the normalized speed-ups matched each other very closely. This is taken to
indicate that, if such a machine were to be implemented for Poligon programs, effort spent on
improving the processor's performance or in optimizing the program would probably be
rewarded by close to linear speed-up.

4.3.4. Discussion of Experiments: What we have learned.
Experience is the name everyone gives to their mistakes. - Qscar Wilde, "Lady Windermere's Fan"

As has already been mentioned the experiments on these systems are in their infancy. It is
essential for the reader to note, therefore, that these results should be taken as nothing more
than indication of where our research is leading us, rather than hard and fast statements about
the performance of these systems.

We have, however, learned quite a bit in the execution of these experiments. The more im-
portant of these lessons are listed below.

o Getting useful speed-up out of these systems, at least given the current level of our
understanding and methodologies, is very difficult. The speed-ups shown for the
experiments mentioned in this section may, indeed, have been achievable by very
careful coding on a uniprocessor. These difficulties are characterized mainly by the
difficulty of implementing the program and debugging it and of combating serial
components in the processing,

» Problem-Solving systems such as the ones mentioned in this paper are significantly
more complex than those programs normally implemented to evaluate experimental
parallel hardware. Our difficulty in getting results indicates that there is more to
getting useful speed-up for real problems than there is to demonstrating speed-up
for Quicksort programs such as [Deminet 82].

« The domain of Real-time systems is one in which the A/ community in general and
this project in particular has little experience. This has made impiementation of
these systems and the analysis of them difficult. The selection of a different field
for research, outside that of real-time systems, would have alleviated this problem
but would have removed the area of experimentation from an important area of

application where it is believed that speed-up through parallelism is both necessary
and feasible.

o Real-time systems present a set of problems for performance evaluation so great
that it is difficult to formulate easily analyzable experiments and draw worthwhile
conclusions from them. These problems are caused by; the need for continuous
data, end effects when the data is bounded in extent, the difficulty of defining
suitable performance measures and Heisenbergian effects i.e. changes in system
load during speed-up measurement changing the speed-up itself.

o Investigation of the amount of "Knowledge Parallelism” has been limited by the

22For each of these experiments the simulated input data rate was also increased so as to factor out this change.
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relatively small amount of Knowledge available in this area. New applications are
being sought in which more Knowledge is available. This has concentrated the in-
vestigation on the extraction of data parallelism from these systems.

« The data sets for the experiments mentioned above are limited in the amount of
data parallelism that can be extracted from them. To add to this problem the
Poligon system is sufficiently difficult to simulate that experiments with sig-
nificantly larger data sets are probably not feasible.

. The immediate conclusion that one is led to by these results is that a relatively
simplistic implementation of a system can lead to speed-ups of the order of 10X.
It seems to be possible to get higher speed-ups from such systems but, at least at
present, only by very careful coding and very careful and thorough instrumentation
of the running system so that bottlenecks can be eliminated.

« So far, it has not been possible to demonstrate overall speed-ups of more than ~8X
using Poligon. The hypothesis that Poligon’s implementation of Elint will be able
to exploit data parallelism as larger data sets are used remains, as yet, untested,
though tentative results from an implementation of Elint in Lamina (~23X) and
Airtrac in Lamina [Nakano 87] (~80X) give cause for hope, indicating that with
larger data sets there definitely is more parallelism to extract.

5. Conclusions

There is something fascinating about science. One gets such wholesale returns of conjecture out of such
a trifling investment of fact. - Mark Twain, "Life on the Mississippi”

This paper has introduced the problems associated with attempts to achieve speed-up though
parallelism for Problem-Solving systems, systems developed in the Artificial Intelligence field.
Numerous applications for such systems would benefit greatly from being sped-up considerably.
Because of their irregular structure, such systems are shown to be difficult to speed up through
well established means.

The Poligon [Rice 86] system was described. Poligon is an attempt to create a system which
is able to encourage the decomposition of a particular class of Problem-Solving systems, known
as Blackboard Systems, into a form, which can be efficiently executed by it on a distributed-
memory, message-passing multiprocessor.

The Poligon system has been implemented and an application called "Elint" has been imple-
mented using it. Lessons learned in the implementation of Poligon and the Elint application
are detailed.

Experiments are now being performed on the Elint application, both for the implementation
mentioned in Poligon and also for systems called Lamina [Delagi 86] and CAGE [Aiello 86].
Some preliminary experimental results are shown. Lessons learned from these experiments are
described. Some of these are as mentioned below.

o It is very difficult to implement both frameworks for concurrent Problem-Sciving
and concurrent Problem-Solving systems themselves. This is due largely to the dif-
ficulty of coping with asynchronous events, caused largely b *hese systems being
MIMD systems.

« Real-time systems are difficult systems to calibrate for the purposes of experimen-
tation to evaluate speed-up.

o Modest speed-up has been achieved (~8X). Indications of higher performance
(~23X-80X) are thought possible through the exploitation more data parallelism
[Nakano 87] .

« The potential for the exploitation of Knowledge Parallelism has not yet been inves-
tigated.
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o If these results are supported by further work they would indicate that large
amounts of parallelism at this grain size might not